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Contexte et objectif
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La region lle-de-France possede la plus grande densité de réseaux de chauffage urbain alimentés par la ‘16+ S I-142D
geothermie en Europe. Avec 54 installations de géothermie profonde en service et plus de 120 puits, le Dogger du o <0
Bassin Parisien est I'un des aquiferes géothermiques les mieux connus au monde, avec un potentiel avéré et un S —
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Cependant, le récent échec du puits de Grigny, GGR2 qui a présenté de faibles transmissivites met en 8 1520 g
évidence la limite des interpolations geéostatistiques classiques et appelle a une meilleure évaluation des @ 2 750 1
perméabilités du réservoir pour réduire le risque des futurs projets de géothermie. En effet la perméabilité est le - .
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parametre clé qui controle I'écoulement, mais aussi les champs de pression et de contrainte, et détermine les - o
debits qui peuvent étre extraits du réservoir. Ce parametre reste néanmoins tres peu contraint, notamment en S °
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I'absence de données de puits ou de carottes. De plus les valeurs de perméabilité s’étendant sur plusieurs ordres g 1620
de grandeur, il est crucial de quantifier I'incertitude des champs de perméabilite. T~ Figure 2: Vue 3D du moddle sandwich utiisé dans Cetie éiude
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Dans cette étude, nous proposons une approche combinant modélisation inverse et directe pour réduire 2 - | 1
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I'incertitude des perméabilités. Nous testons notre approche sur la base d’'un modele sandwich, classiguement
utilisé dans le bassin Parisien et dans un secteur bien contraint du Val-de-Marne (Figures 1 et 2), et avons utilisé e e ooy Crvor: bosange rouge : pults simules dans cetie etude.
les logiciels en acces libre MRST (Matlab Reservoir Simulation Toolbox) et JutulDarcy.jl, développés par SINTEF.
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: Nous avons tout d’abord défini un modele de En modélisation des réservoirs, la discrétisation de ’équation de Darcy est le plus
référence (Simulation 0 — Figure 3). Les perméabilités souvent réalisé par un schéma d’approximation de flux a deux points, qui décrit le flux
ont été krigées a partir des résultats des essais des entre deux cellules voisines i et j et leur différence de pression, vij = - ®;; (pi-pj). La _ o
. , , . L. L. i ., , e, U,' Figure 5 : Définition de la transmissibilit¢ dans un schema
puits presentés sur la Figure 1. Les conditions initiales constante de proportionnalité ®; est appelée la transmissibilité. Elle dépend des d'approximation de flux & deux points.
du modele ont été définies en considérant la propriétés geométriques de la grille et du tenseur de perméabilité et peut étre calculé
température mesurée au toit du réservoir et un gradient une fois pour toute une fois la grille et les propriétés pétrophysiques définies.
thermique constant de 3°/100 m, ainsi qu’un gradient
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La production du réservoir a ensuite été simulée 5 e e £ 200
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Figure 3 : carte de perméabilité du réservoir — simulation de référence sorte a minimiser l’ecart entre la temperature de : oo | | S o ! 62.5 - : 608 Yo e ‘
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Figure 4 : carte des températures du réservoir apres exploitation (1983 — 2023)

_ simulation de référence Figure 6 : Evolution des températures de production (en entrée centrale) et dans le réservoir au droit des différents puits producteur de I'étude. Ronds noirs : données d’exploitation non corrigées. Trait noir : données d’exploitation
moyennées et ramenées a la température du réservoir. Trait rouge : température dans le réservoir pour une transmissibilité optimisée. Trait bleu : température dans le réservoir pour la simulation de référence (simulation 0).

Approche statistique

L'optimisation des transmissibilités permets de générer une représentation optimisée des
permeéabilités (non présentée ici), mais ne fourni pas d’information quant a Uincertitude des GTHIP __GCHL2P GIvap GviLzP
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perméabilités. Nous avons donc utilisé une approche stochastique complémentaire, dans 782!
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Nous avons ensuite simulé Uexploitation pendant 40 ans (Figure 8). Les différentes T 754) & B s &
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Figure 8 : Evolution des températures dans le réservoir au droit des différents puits producteur de I'étude. Trait noir : données d’exploitation moyennées et ramenées a la température du réservoir. Trait rouge : température dans le réservoir pour une transmissibilité optimisée. Trait

bleu : température dans le réservoir pour la simulation de référence (simulation 0). Traits gris : température dans le réservoir pour les 100 simulations aléatoires
Figure 7 : Cartes des perméabilités pour quelques une des 100 simulations et perméabilité du modéle de référence (simulation 0)

Conclusions et perspectives

Nos simulations montrent que les logiciels libres MRST et JutulDarcy.jl peuvent étre utilisés pour simuler rapidement des problemes d’optimisation des réservoirs géothermiques. La simulation optimisée reproduit dans I'ensemble bien les données observées.
Cependant, toutes les simulations avec des perméabilités générées aléatoirement ou celles du modele de références dévient globalement du modele optimisé et des données d’exploitations.

Plusieurs pistes de recherches futures sont envisagées pour cette étude :

e Une étude approfondie des données d’exploitation

e Optimiser les perméabilités (et non la transmissibilités), ainsi que d’autres parametre comme I'épaisseur du modele, la conductivité thermique, la porosité, etc...
o Tester des modeles géologiques plus complexes (autres que sandwich) avec des perméabilités obtenues des diagraphies

e En dériver des relations entre les différentes échelles spatiales

o Tester cette approche sur d’autres secteur du Dogger parisien
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