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Introduction

Flow in porous media

The study of fluid flow (water, oil, gas) through pores in a solid (porous rock formation)

� Hydrocarbon recovery from petroleum reservoirs

| Fossil fuels and petrochemical products (e.g., lubricants, fertilizers, plastics)

� Geothermal energy exploitation

| Harness the thermal energy from underground aquifers

� CO2 storage to mitigate greenhouse effects

| Capture CO2 from industrial processes and store it underground
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Introduction – Reservoir Simulation

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sw

kr,w

kr,n

(φραSα)t +∇ · (ρα~vα) = qα

~vα = −λαK(∇pα − ραg∇z)
pwc = pn − pw , Sw + Sn = 1

Flow model

Porosity

Geological model

3 / 35



Introduction – Reservoir Simulation
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Flow in Porous Media – The Geological Model

Solid rock
Pore

� Flow in pore networks is complex, and requires extensive computer resources to simulate

� ... but we don’t need this level of detail!

| Instead: approximate porous rock by representative elementary volume (REV)
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Flow in Porous Media – The Geological Model

Solid rock
Pore K

φ = 0.39

� Flow in pore networks is complex, and requires extensive computer resources to simulate

� ... but we don’t need this level of detail!

| Instead: approximate porous rock by representative elementary volume (REV)

K: permeability – rock’s ability to transmit a fluid | φ: porosity – fraction of rock that is pore space
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Flow in Porous Media – The Geological Model

Porosity

Norne oil and gas field in the the Norwegian Sea, operated by Equinor
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Flow in Porous Media – The Flow Model

� Conservation of mass of fluid phase α on semi-discrete, implicit, residual form

Rn+1
α =

1

∆tn
(Mn+1

α −Mn
α) +∇ · ~Fn+1

α −Qn+1
α = 0, α = a, `, v

� For immiscible multiphase flow, we have

Mα = φραSα, ~Fα = ρα~vα, Qα = ραqα

� Darcy velocity ~vα given by Darcy’s law

~vα = −λαK(∇pα − ραg∇z), λα =
kr ,α
µα

� Closure relations

Sa + S` + Sv = 1, pαc = p` − pα for α = a, v

Accumulation Fluxes Sources/sinks
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Flow in Porous Media – The Flow Model

Sequential splitting – flow and transport

� Physical quantities in Rα = 0 exhibit very different mathematical character

flow variables, e.g. p, ~v︸ ︷︷ ︸
elliptic

transport variables, e.g. Sα︸ ︷︷ ︸
hyperbolic

� Flow equation: weighted sum of conservation equations

Rn+1
F =

∑
α=a,`,v

ωαRn+1
α = 0, where

∑
α=a,`,v

∂u(ωαMn+1
α ) = 0 for u 6= p

� Transport equations: Rα = 0 with ~vα redefined with total velocity ~v = ~va + ~v` + ~vv

~vα = fα
(
~v + K

∑
β=a,`,v

λβ[ ~Gα − ~Gβ]
)
, fα =

λα
λa + λ` + λv

and ~Gα = ραg∇z −∇pαc
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Discretization

Ωi
N (i)
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Discretization

Spatial discretization

� Integrate residual equations over each cell in space → finite-volume discretization

Rn+1
α =

1

∆tn
(Mn+1

α −Mn
α) +∇ · Fn+1

α −Qn+1
α = 0

∫
Ωi

MαdV ≈ |Ωi |Mα,i Mass terms∫
Ωi

∇ · ~FαdV ≈
∑

j∈N (i)

Fα,ij Flux terms

∫
Ωi

Qα,idV ≈ |Ωi |Qα,i Source terms

Ωi

Ωj

N (i)

vij

Γij
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Discretization

Spatial discretization

� Integrate residual equations over each cell in space → finite-volume discretization∫
Ωi

Rn+1
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1

∆tn

∫
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Solution Strategies

Flow and transport
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Solution Strategies – Newton’s Method

Each strategy involves solving system of nonlinear residual equations R(u) = 0

� Assume R(u + ∆u) = 0, and linearize around u

0 = R(u + ∆u) = R(u) +
∂R
∂u

∆u +O(‖∆u‖2)

� Neglect higher-order terms → Newton’s method

uk+1 = uk + ∆u, where − ∂R
∂u

∆u = R(uk)
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Solution Strategies – Newton’s Method

Initial state u0

n = 0,u1 = u0

Compute residual
un+1 →R(un+1)

‖R(un+1)‖ < ε?
Solve linear system
−∂R

∂u ∆u = R(un+1)
Update solution

un+1 = un+1 + Θ∆u

tn+1 = T?
Next timestep

n = n + 1,un+1 = un

no

yes

no yes
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Paper I – III: Unstructured Gridding and Consistent Discretizations

I: Unstructured Gridding and Consistent Discretizations for Reservoirs With Faults and Complex Wells
Øystein S. Klemetsdal, Runar Lie Berge, Knut-Andreas Lie, Halvor Møll Nilsen, Olav Møyner
In proceedings of the 2017 SPE Reservoir Simulation Conference, Montgomery, Texas, USA

DOI: 10.2118/182666-MS

II: Unstructured Voronoi Grids Conforming to Lower-dimensional Objects
Runar Lie Berge, Øystein S. Klemetsdal, Knut-Andreas Lie
Computational Geosciences, volume 23, issue 1, pp. 169–188, 2019

DOI: 10.1007/s10596-018-9790-0

III: A Comparison of Consistent Discretizations for Elliptic Poisson-Type Problems on Unstructured
Polyhedral Grids
Øystein S. Klemetsdal, Olav Møyner, Xavier Raynaud, Knut-Andreas Lie

Manuscript in preparation, 2019
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Paper I – III: Unstructured Gridding and Consistent Discretizations

� The computational grid has a direct impact on the quality of the numerical solution

• Conform to intersecting faults, fractures, well trajectories
[Branets et al., 2009, Manzoor et al., 2018, Toor et al., 2015] ...

� ... but what is the best computational grid will depend on the specific discretization

• Linear/nonlinear two-point, multipoint, mimetic, virtual elements, etc.
[Le Potier, 2009, Aavatsmark et al., 1994, Brezzi et al., 2005] ...
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Paper I – III: Unstructured Gridding and Consistent Discretizations
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Paper IV: Multiscale Simulation with Dynamically Adapted Basis Functions

IV: Accelerating Multiscale Simulation of Complex Geomodels by Use of Dynamically Adapted Basis
Functions
Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-9827-z
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Paper IV: Multiscale Simulation with Dynamically Adapted Basis Functions

∂R`
∂u`

∂Ra
∂u`

∂R`
∂ua

∂Ra
∂ua

∂RW
∂uW

nnz = 359

∂R`
∂u`

∂Ra
∂u`

∂R`
∂ua

∂Ra
∂ua

∂RW
∂uW

nnz = 1.48 × 106

� Solving linearized systems typically accounts for a large portion of simulation time

• Mixed elliptic/hyperbolic character → pressure is a strong variable
• Large aspect ratios and variations in rock properties → ill-conditioned systems

� Efficient iterative linear solvers with efficient preconditioners are therefore crucial

• Constrained pressure residual (CPR): physics-based preconditioner [Wallis et al., 1985]
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver

V: Non-linear Newton Solver for a Polymer Two-phase System Using Interface-localized Trust Regions
Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
In proceedings of the 19th European Symposium on Improved Oil Recovery, 2017, Stavanger, Norway

DOI: 10.3997/2214-4609.201700356

VI: Robust Nonlinear Newton Solver with Adaptive Interface-Localized Trust Regions
Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
SPE Journal, volume 24, issue 4, pp. 1576–1594, 2019

DOI: 10.2118/195682-PA
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver

� Transport problems are often very challenging for the nonlinear solver

• Update ∆u may send solution into different contraction regions
• ... or cause changes in upstream direction

� Often caused by too long timestep

• Whatever-works-approach: reduce timestep if solver has not converged after N iterations
• Potentially large amount of wasted computational effort
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver

� Unconditional convergence by using trust regions [Jenny et al., 2009, Møyner, 2017]

... but computing trust regions is expensive, and damping may be overly restrictive
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver

Example: Layer 10 of SEP10 Model 2

� Quadratic relative permeabilities, slightly compressible fluids/rock

� Simulate water + polymer slug + water over 2000 days using 100, 20, and 3 (!) timesteps

• Water/polymer interplay + long timesteps challenging for nonlinear solver
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Paper V–VI: Adaptive Interface-Localized Trust Region Solver

Example: Layer 10 of SEP10 Model 2

� Trust region: no wasted iterations even with only 3 timesteps

� Adaptive trust-region solver significantly better for modest timesteps
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

VII: Efficient Reordered Nonlinear Gauss-Seidel Solvers With Higher Order For Black-Oil Models
Øystein S. Klemetsdal, Atgeirr Flø Rasmussen, Olav Møyner, Knut-Andreas Lie
Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-09844-5

VIII: Implicit High-resolution Compositional Simulation with Optimal Ordering of Unknowns and Adaptive
Spatial Refinement
Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie
In proceedings of the 2019 SPE Reservoir Simulation Conference, Galveston, Texas, USA

DOI: 10.2118/193934-MS

IX: Dynamic Coarsening and Local Reordered Nonlinear Solvers for Simulating Transport in Porous Media
Øystein S. Klemetsdal, Knut-Andreas Lie

Manuscript in preparation, 2019
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

� Hyperbolic transport problems have finite speed of propagation

• Updates ∆u typically > 0 only near propagating fluid fronts and wells
• Newton solver uses substantial efforts to compute zeros!

� Particularly true for real reservoir models: flow mainly restricted to drainage regions
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

� Solve flow problem RF = 0 → pressure and intercell fluxes

� Split neighbors N (i) into upstream U(i) and downstream D(i)

� Only viscous forces: flux graph is acyclic (DAG)

• Solve transport problems cell-by-cell in topological order
[Natvig and Lie, 2008, Lie et al., 2014]

Ωi
D(i)U(i)

︷ ︸︸ ︷

1

∆tn
(Mn+1

i −Mn
i ) +

∑
j∈N (i)

Fn+1
ij

︸ ︷︷ ︸
︷ ︸︸ ︷

−Qn+1
i = 0
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Injection

Production

~g

Original ordering

vv

v`

Topological ordering
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Example: Layer 50 of SPE 10 model 2

� Fluvial sandstone channels on mudstone

� Filled with oil, injection of 0.2 PV water

� Quadratic relative permeabilities

� Slightly compressible fluids/rock

Permeability Porosity Cell index
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Water saturation

dG(0) dG(0) dG(0)

dG(1) dG(1) dG(1)
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations per cell
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations per cell

dG(0) dG(0) dG(0)

dG(1) dG(1) dG(1)

Most iterations spent at water front

Large portion of cells already converged
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Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations
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Paper XI: Dynamic Coarsening

1
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Ω1
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2

� Dynamic grid refinement challenging for complex geomodels

� Construct coarse grids by partitioning (rectilinear, METIS, non-uniform coarsening, etc.)

• Coarse grid block = aggregate of fine cells [Karypis and Kumar, 1998, Hauge et al., 2012]
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Initial grid
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� Mapping should be mass conservative

|Ωa
i |Ma

α,i (u
a) =

∑
j∈Ca(i)

|Ωj |Mα,j(u) (1)

� Pressure and total intercell fluxes

pa
α,i =

1

φa
i |Ωa

i |
∑

j∈Ca(i)

φj |Ωj |pα,j︸ ︷︷ ︸
pore-volume-weighted

, v a
ij =

∑
(m,n)∈Ea(i,j)

vmn︸ ︷︷ ︸
sum fine-scale fluxes

� Immiscible: Saturations found by solving (1)

� After transport: map saturations to fine grid

Sα,j = Sa
α,i ∀j ∈ C(i),
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Paper XI: Dynamic Coarsening

Permeability Kx (md), top Permeability Kx (md), bottom

Example: Olympus field model [Fonseca et al., 2018]

� Cornerpoint grid format with 197 750 active cells, modelled from North Sea oil field

� Permeability/porosity: 1000 md/0.35 in sandstone channels – 1 md/0.03 in shale layers

� Compressible oil-water model: density 850/1020 kg/m3, viscosity 2.59/0.395 cP
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Finer cells in oil zone

Coarser cells away from oil zone
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Water production rate (m3/day)
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Very close match between reference and dynamic solution in all production wells
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Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir
simulation by exploiting physical and mathematical structures of the underlying problem

� Has been achieved by working with a variety of topics

• Unstructured gridding algorithms and consistent discretizations for complex reservoirs
• Efficient iterative linear solver with elliptic multiscale preconditioning
• Nonlinear transport solver with sophisticated adaptive trust-region damping
• Localized nonlinear transport solvers based on reordering, with dynamic coarsening

� Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Initial state u0

n = 0,u1 = u0

Compute residual
un+1 →R(un+1)

‖R(un+1)‖ < ε?
Solve linear system
−∂R

∂u ∆u = R(un+1)
Update solution

un+1 = un+1 + Θ∆u

tn+1 = T?
Next timestep

n = n + 1,un+1 = un

no

yes

no yes
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� Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Reproducible and transparent research

� Open-source software development (Matlab Reservoir Simulation Toolbox, www.mrst.no)

� Methods tested on challenging and realistic problems, with variety of parameters

• Reported cases when methods do not work well
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