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Introduction

Flow in porous media

The study of fluid flow (water, oil, gas) through pores in a solid (porous rock formation)

m Hydrocarbon recovery from petroleum reservoirs

| Fossil fuels and petrochemical products (e.g., lubricants, fertilizers, plastics)
m Geothermal energy exploitation

| Harness the thermal energy from underground aquifers
m CO, storage to mitigate greenhouse effects

| Capture CO, from industrial processes and store it underground
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Flow in Porous Media — The Geological Model

m Flow in pore networks is complex, and requires extensive computer resources to simulate



Flow in Porous Media — The Geological Model

¢ =0.39

m Flow in pore networks is complex, and requires extensive computer resources to simulate
m ... but we don’t need this level of detail!
| Instead: approximate porous rock by representative elementary volume (REV)

K: permeability — rock’s ability to transmit a fluid | ¢: porosity — fraction of rock that is pore space



Flow in Porous Media — The Geological Model
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Norne oil and gas field in the the Norwegian Sea, operated by Equinor



Flow in Porous Media — The Flow Model

m Conservation of mass of fluid phase a on semi-discrete, implicit, residual form

1 —
R = (M = M)+ V- Fat - Qi =0, a=alv

m For immiscible multiphase flow, we have

—

M, = ¢>Pa5m Fo = pava, Qo = Paa

m Darcy velocity v, given by Darcy’s law

X

‘7(1 = _)\aK(Vpa - pagvz)v Ao = e

m Closure relations

SatSi+S, =1, pe = pe—pa fora=a,v



Flow in Porous Media — The Flow Model

Sequential splitting — flow and transport
m Physical quantities in R, = 0 exhibit very different mathematical character

flow variables, e.g. p, vV transport variables, e.g. S,

elliptic hyperbolic
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Flow in Porous Media — The Flow Model

Sequential splitting — flow and transport
m Physical quantities in R, = 0 exhibit very different mathematical character

flow variables, e.g. p, vV transport variables, e.g. S,

elliptic hyperbolic

m Flow equation: weighted sum of conservation equations

R = Z WaRM =0, where Z Du(waMP Y =0 foru#p

a=al,v a=a,l,v
m Transport equations: R, = 0 with v, redefined with total velocity v = v, + v; + v,

. " = = _ Aa = _ o
Voo = fa(v + K Z )\ﬁ[Ga — G‘ﬁ])7 fa = m and Ga = pasz Vpc

B=a,l,v



Discretization



Spatial discretization
m Integrate residual equations over each cell in space — finite-volume discretization

_ L

+1
Re = Atn

(M = M2) + V- 7ot = Qrt =0
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Spatial discretization

m Integrate residual equations over each cell in space — finite-volume discretization

1 —
/Rgﬂdv: /(Mg“—Mg)dw/ V'fﬂ“d‘/‘/ QtdV =0
Q At" Q; Q; Q;

T~

/ ModV = |Qi|Ma,i Mass terms
Q;

/V~}_:adV% Z Fa,ij Flux terms
@ JEN()

/ Qa,idV = |Qi|Qa,i Source terms
Q;



Solution Strategies

Fully implicit

Flow and transport

cn=n+1

Solve ’R(uﬁ“, u?“) =0

Unknowns: uﬁ“, u?“

Next timeste|
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Solution S

Fally mp [ Flow ]
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Solution Strategies

Sequential fully implicit

Sequential implicit
Solve R (4" ) =0
T Unkaours:
Fully impl :
Solve ’R/:(U,’,l“, u7)=0 IS J L,

- - o
H H S S Il S~

= Transport S

] ~
< - Ivi n+1 n+1 — <
. Solve R(uf*!, uttl) =0 S 7 Solve Rr(uf™, uf) =0 3
g &l | I £
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e = it = 2

n n
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Solution Strategies — Newton's Method

Each strategy involves solving system of nonlinear residual equations R(u) =0

m Assume R(u + Au) = 0, and linearize around u
oR
0=R(u+Au)=R(u)+ EAU +O(||Au|]?)
m Neglect higher-order terms — Newton's method

R
u !t = uk 4 Au,  where — a@TAu = R(u")
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Solution Strategies — Newton's M

{

N P
Initial state u® .| Compute residual Y no | Solve linear system Update solution
?
n=0, ul = uo A yntl —)R(u"“) ”R(ll )” <ef —%—?Au:R(u""’l) u™l — yrtl L @Au
y L J L
yes
4

Next timestep
n=n+1u"tt=u"

trtl =T7
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Paper | — Ill: Unstructured Gridding and Consistent Discretizations

I: Unstructured Gridding and Consistent Discretizations for Reservoirs With Faults and Complex Wells
Qystein S. Klemetsdal, Runar Lie Berge, Knut-Andreas Lie, Halvor Mgll Nilsen, Olav Mgyner
In proceedings of the 2017 SPE Reservoir Simulation Conference, Montgomery, Texas, USA
DOI: 10.2118/182666-MS

II: Unstructured Voronoi Grids Conforming to Lower-dimensional Objects
Runar Lie Berge, @ystein S. Klemetsdal, Knut-Andreas Lie
Computational Geosciences, volume 23, issue 1, pp. 169-188, 2019

DOI: 10.1007/510596-018-9790-0

I1l: A Comparison of Consistent Discretizations for Elliptic Poisson-Type Problems on Unstructured
Polyhedral Grids
Qystein S. Klemetsdal, Olav Mgyner, Xavier Raynaud, Knut-Andreas Lie
Manuscript in preparation, 2019

Update solution
u™l =yt L @A

Initial state u® Compute residual
n=0,u'=u u™t — R(u"t)

Next timestep
n=n+1,u"t =u"
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Paper | — Ill: Unstructured Gridding and Consistent Discretizations

®m The computational grid has a direct impact on the quality of the numerical solution

e Conform to intersecting faults, fractures, well trajectories
[Branets et al., 2009, Manzoor et al., 2018, Toor et al., 2015] ...

m ... but what is the best computational grid will depend on the specific discretization

e Linear/nonlinear two-point, multipoint, mimetic, virtual elements, etc.
[Le Potier, 2009, Aavatsmark et al., 1994, Brezzi et al., 2005] ...

Update solution
u™l =yt L @A

Initial state u® Compute residual
n=0,u'=u u™t — R(u"t)

Next timestep
n=n+1,u"t =u"
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Unstructured Gridding and Consistent Discretizations
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Paper IV: Multiscale Simulation with Dynamically Adapted Basis Functions

IV: Accelerating Multiscale Simulation of Complex Geomodels by Use of Dynamically Adapted Basis
Functions
Qystein S. Klemetsdal, Olav Mgyner, Knut-Andreas Lie
Computational Geosciences, published ahead of print, 2019
DOI: 10.1007/510596-019-9827-z

Update solution
un+1 — un+1 e OAu

Initial state u® Compute residual
n= 07 ul — uO un+l — 'R.(lln+1)

Next timestep
n=n+1u" =u"

[R(u" || < e?

Solve linear system
IR Ay — 1
— R Au=R(u")
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er IV: Multiscale Simulation with Dynamically Adapted Basis Functions

nnz = 1.48 x 10

\\

m Solving linearized systems typically accounts for a large portion of simulation time

e Mixed elliptic/hyperbolic character — pressure is a strong variable
e Large aspect ratios and variations in rock properties — ill-conditioned systems

m Efficient iterative linear solvers with efficient preconditioners are therefore crucial
e Constrained pressure residual (CPR): physics-based preconditioner [Wallis et al., 1985]
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Paper V-VI: Adaptive Interface-Localized Trust Region Solver

V: Non-linear Newton Solver for a Polymer Two-phase System Using Interface-localized Trust Regions
Qystein S. Klemetsdal, Olav Mgyner, Knut-Andreas Lie
In proceedings of the 19th European Symposium on Improved Oil Recovery, 2017, Stavanger, Norway
DOI: 10.3997/2214-4609.201700356

VI: Robust Nonlinear Newton Solver with Adaptive Interface-Localized Trust Regions
Qystein S. Klemetsdal, Olav Mgyner, Knut-Andreas Lie
SPE Journal, volume 24, issue 4, pp. 1576-1594, 2019

DOI: 10.2118/195682-PA

Initial state u® Compute residual
n= 07 ul = u° un+1 — R(un+1)

Next timestep
n=n+1u" =u"

Solve linear system Update solution

1
||R(un+ )” <e? un+1 = un+1 + ®Au

ttl =T7
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Paper V-VI: Adaptive Interface-Localized Trust Region Solver

m Transport problems are often very challenging for the nonlinear solver

e Update Au may send solution into different contraction regions
e ... or cause changes in upstream direction

m Often caused by too long timestep

e Whatever-works-approach: reduce timestep if solver has not converged after N iterations
e Potentially large amount of wasted computational effort

Initial state u® Compute residual
n= 07 ul = u° un+1 — R(un+1)

Next timestep
n=n+1u" =u"

Update solution
u™l =yl 4 @Au
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Paper V-VI: Adaptive Interface-Localized Trust Region Solver

1
(Sy) I f(S,)
I
i .
| Inflection point ,
I / ~ Solution
1
! .
I ’ -
| 4 -7
Start | T
- a- Without TR - a- Without TR
| - <~ With TR -+~ With TR
Sy Sw
(a) Newton’s method fails to converge (b) TR solver is overly restrictive

m Unconditional convergence by using trust regions [Jenny et al., 2009, Mgyner, 2017]
... but computing trust regions is expensive, and damping may be overly restrictive
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Paper V-VI: Adaptive Interface-Localized Trust Region Solver
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Paper V-VI: Adaptive Interface-Localized Trust Region Solver

Example: Layer 10 of SEP10 Model 2
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m Quadratic relative permeabilities, slightly compressible fluids/rock
m Simulate water + polymer slug + water over 2000 days using 100, 20, and 3 (!) timesteps

e \Water/polymer interplay + long timesteps challenging for nonlinear solver



Paper V-VI: Adaptive Interface-Localized Trust Region Solver

Example: Layer 10 of SEP10 Model 2

900 T
I Newton N.=3
800 [ Newton, wasted t= —
- LS
700 N,=100 LS, wasted i
TR
4] CCIATR
S 600 -
g 500
]
i N;=100 N,=20
g 400
2]
c
S 300
[
200
100
0

Initial Waterflood Polymer Injection Polymer Dispersal

m Trust region: no wasted iterations even with only 3 timesteps

m Adaptive trust-region solver significantly better for modest timesteps
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

VII: Efficient Reordered Nonlinear Gauss-Seidel Solvers With Higher Order For Black-Oil Models
Qystein S. Klemetsdal, Atgeirr FIg Rasmussen, Olav Mgyner, Knut-Andreas Lie
Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-09844-5

VIII: Implicit High-resolution Compositional Simulation with Optimal Ordering of Unknowns and Adaptive

Spatial Refinement
Qystein S. Klemetsdal, Olav Mgyner, Knut-Andreas Lie
In proceedings of the 2019 SPE Reservoir Simulation Conference, Galveston, Texas, USA

DOI: 10.2118/193934-MS

IX: Dynamic Coarsening and Local Reordered Nonlinear Solvers for Simulating Transport in Porous Media
Qystein S. Klemetsdal, Knut-Andreas Lie
Manuscript in preparation, 2019

Update solution
ul = gt L @AY

[R(um )] < e?

Solve linear system
IR
—IRAu=R(u™")

Initial state u® Compute residual
n=0,u'=u u™t — R(u"t)

Next timestep
n=n+1,u"t =u"

N
N



Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

m Hyperbolic transport problems have finite speed of propagation

e Updates Au typically > 0 only near propagating fluid fronts and wells
e Newton solver uses substantial efforts to compute zeros!

m Particularly true for real reservoir models: flow mainly restricted to drainage regions

Update solution
u"tl =y + OAu

Initial state u® Compute residual
n=0, ul = ud utl ’R(u"“) ||R(un+1)|| <e?

Next timestep
n=n+1,u"t =u"

Solve linear system
IR
—9RAu=R(u™")




Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

m Solve flow problem Rr = 0 — pressure and intercell fluxes
m Split neighbors A/ (i) into upstream (/) and downstream D(/)

(Mn+1 n Z ]_-n+1 Q7+1 -0

n
At v



Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

m Solve flow problem Rr = 0 — pressure and intercell fluxes
m Split neighbors N(i) into upstream /(i) and downstream D(/)

(Mn+1 Z ‘F'I:I,?Jrl Z F5]+1 _ Q7+1 -0

Jeu(i JED(i

Atn
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

m Solve flow problem Rr = 0 — pressure and intercell fluxes
m Split neighbors N(i) into upstream /(i) and downstream D(/)

/—[depend on values in Q;}—\

n+l n+1 n+1 n+l _
At"(M g f,-j E ]-—,-J- —Q,- =0
JEU(i) JED(i
N———

[depend on values in U(i)]—/\
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

m Solve flow problem Rr = 0 — pressure and intercell fluxes
m Split neighbors N(i) into upstream /(i) and downstream D(/)
m Only viscous forces: flux graph is acyclic (DAG)

e Solve transport problems cell-by-cell in topological order
[Natvig and Lie, 2008, Lie et al., 2014]

/—[depend on values in Q;}—\

n+1 n n+1 n+1 n+1 __
A M M)+ S F D ‘Fij -Q =0
Jeu(i JED(i
———

[depend on values in U(i)]—/\

At”
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Production

* + | Original ordering

Injection
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Production

4 | Topological ordering

* + | Original ordering

Injection
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Example: Layer 50 of SPE 10 model 2
m Fluvial sandstone channels on mudstone
m Filled with oil, injection of 0.2 PV water
m Quadratic relative permeabilities

m Slightly compressible fluids/rock

I N
le-l6  le-l4  le-12 01 02 03 04 1 3301 6601 9900 13200

|

Permeability Porosity Cell index

25/35



Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

dG(0

I %

dG(1

e

Water saturation
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations per cell
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Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations per cell

Large portion of cells already converged

5
o o
4

dG(1) dG(1) dG(1) 1




Paper VII-IX: Localized Reordered Nonlinear Transport Solvers

Nonlinear transport iterations
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Paper XI: Dynamic Coarsening

Fine grid Partition 71 Coarse grid

® Dynamic grid refinement challenging for complex geomodels

m Construct coarse grids by partitioning (rectilinear, METIS, non-uniform coarsening, etc.)
e Coarse grid block = aggregate of fine cells [Karypis and Kumar, 1998, Hauge et al., 2012]

27 /35



Paper XI: Dynamic Coarsening

Initial grid

Update level

Cells from 71,
CB P
4 a

Updated grid

Mapping should be mass conservative

Q7 ME () = D 1Q[Maj(u) (1)

J€Ca(i)

Pressure and total intercell fluxes

a 1 a
Pa,i = W Z ®illpa, vy = Z Vmn

' jeca(i) (m,n)€E4(i.j)

pore-volume-weighted sum fine-scale fluxes

Immiscible: Saturations found by solving (1)

After transport: map saturations to fine grid

Sayj = S;,i VJ S C(’):
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Paper XI: Dynamic Coarsening

g t . ! J 7 ”

DO
JOCNOC
JOOC

¢
&
}

o0
2
>

~
&,

2

&
a®a
O
!

e
8!

(l TN
T T T T

29/35



Paper XI: Dynamic Coarsening
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Paper XI: Dynamic Coarsening
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Paper XI: Dynamic Coarsening
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Paper XI: Dynamic Coarsening
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Paper XI: Dynamic Coarsening

O

OO0

OO

XOOCO
X

X
)

X

LCOOOOOCONOOCUOCOOROOCIOO0O
J0000000606°804001606)00600004

COOOOOOOCIDOOROOUOCOOCOCCC

) 0000000040006 )08 0 ¢

X
JOCO0CC
JOCOOLOCOO00)

OODOCIOODO0 XX

IO OOV IO




a0
=

Dynamic Coarseni

Paper Xl

O

OO0

OO

X
)

XOOCO

X

LCOOOOOCONOOCUOCOOROOCIOO0O
J90000060060.'00400(06)0600005
COOOOOOOCIDOOROOUOCOOCOCCC

) 0000000040006 )08 0 ¢

X

JOCO0CC
JOCOOLOCOO00)

II]IIII JOOO0) X

IO OOV IO




Paper XI: Dynamic Coarsening

I B
0.01 0.24 3.84 61.9 997.42 40.22 70.33 122.99 215.08 376.11

Example: Olympus field model [Fonseca et al., 2018]
m Cornerpoint grid format with 197 750 active cells, modelled from North Sea oil field
m Permeability/porosity: 1000 md/0.35 in sandstone channels — 1 md/0.03 in shale layers
m Compressible oil-water model: density 850/1020 kg/m3, viscosity 2.59/0.395 cP
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Paper XI: Dynamic Coarsening
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Paper XI: Dynamic Coarsening

Water production rate (m*/day)
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Very close match between reference and dynamic solution in all production wells



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir
simulation by exploiting physical and mathematical structures of the underlying problem

m Has been achieved by working with a variety of topics

e Unstructured gridding algorithms and consistent discretizations for complex reservoirs
e Efficient iterative linear solver with elliptic multiscale preconditioning

e Nonlinear transport solver with sophisticated adaptive trust-region damping

e | ocalized nonlinear transport solvers based on reordering, with dynamic coarsening

® Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Initial state u® Compute residual Solve linear system
n=0,ut=u u™l — R(u") —9R Ay = R(u")
Next timestep
n=n+1u"l=u"

Update solution

||R(un+1)|| < e? un+1 _ un+1 + GAu

thtl =T7
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Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir
simulation by exploiting physical and mathematical structures of the underlying problem

m Has been achieved by working with a variety of topics
e Unstructured gridding algorithms and consistent discretizations for complex reservoirs
e Efficient iterative linear solver with elliptic multiscale preconditioning
® Nonlinear transport solver with sophisticated adaptive trust-region damping
e | ocalized nonlinear transport solvers based on reordering, with dynamic coarsening

® Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Initial state u® Compute residual
n=0,ut=u u™l — R(u")

Update solution
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n=n+1u"l=u"
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Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir
simulation by exploiting physical and mathematical structures of the underlying problem

m Has been achieved by working with a variety of topics

e Unstructured gridding algorithms and consistent discretizations for complex reservoirs
e Efficient iterative linear solver with elliptic multiscale preconditioning

e Nonlinear transport solver with sophisticated adaptive trust-region damping

e | ocalized nonlinear transport solvers based on reordering, with dynamic coarsening

® Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Initial state u® Compute residual Solve linear system Update solution
n= ()7 ul = uo u"“ — R(UnJrl) —%AU = R(u”“) utl = gntl + OAu
Next timestep
n=n+1u" =u"

IR(u+)] < <2
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Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir
simulation by exploiting physical and mathematical structures of the underlying problem

m Has been achieved by working with a variety of topics

e Unstructured gridding algorithms and consistent discretizations for complex reservoirs
e Efficient iterative linear solver with elliptic multiscale preconditioning

e Nonlinear transport solver with sophisticated adaptive trust-region damping

e | ocalized nonlinear transport solvers based on reordering, with dynamic coarsening

® Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)
Reproducible and transparent research
m Open-source software development (Matlab Reservoir Simulation Toolbox, www.mrst.no)

m Methods tested on challenging and realistic problems, with variety of parameters
e Reported cases when methods do not work well
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