

Efficient Solvers for Field-Scale Simulation of Flow and Transport in Porous Media

Øystein Strengehagen Klemetsdal

Department of Mathematical Sciences, NTNU, Norway

PhD Defense
November 27, 2019, Trondheim, Norway

Part I

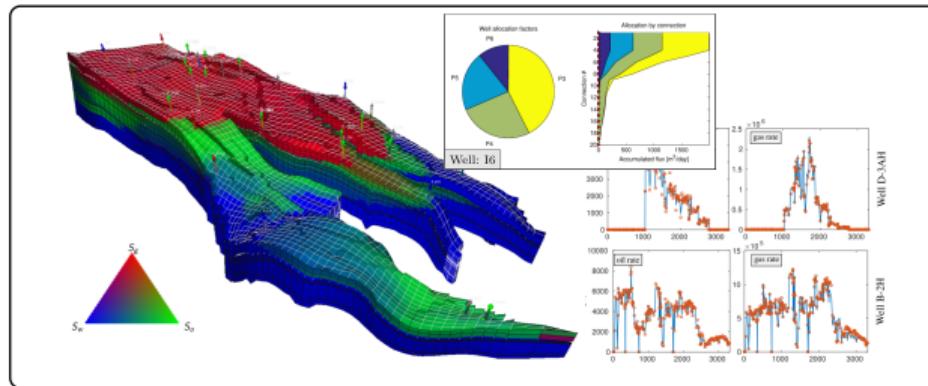
Introduction

Flow in porous media

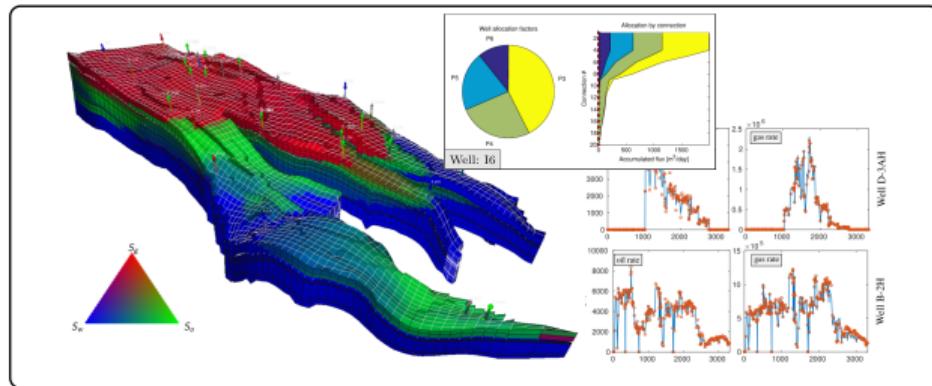
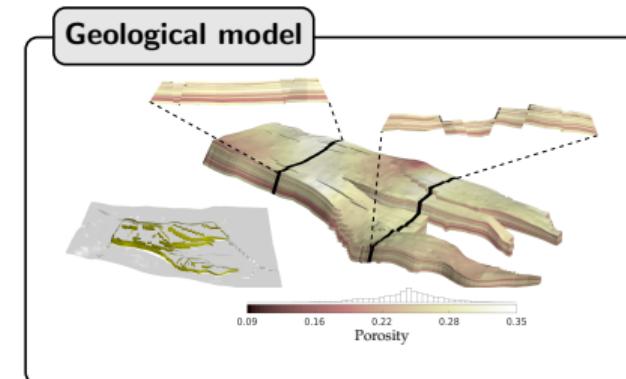
The study of fluid flow (water, oil, gas) through pores in a solid (porous rock formation)

- Hydrocarbon recovery from petroleum reservoirs
 - | Fossil fuels and petrochemical products (e.g., lubricants, fertilizers, plastics)
- Geothermal energy exploitation
 - | Harness the thermal energy from underground aquifers
- CO₂ storage to mitigate greenhouse effects
 - | Capture CO₂ from industrial processes and store it underground

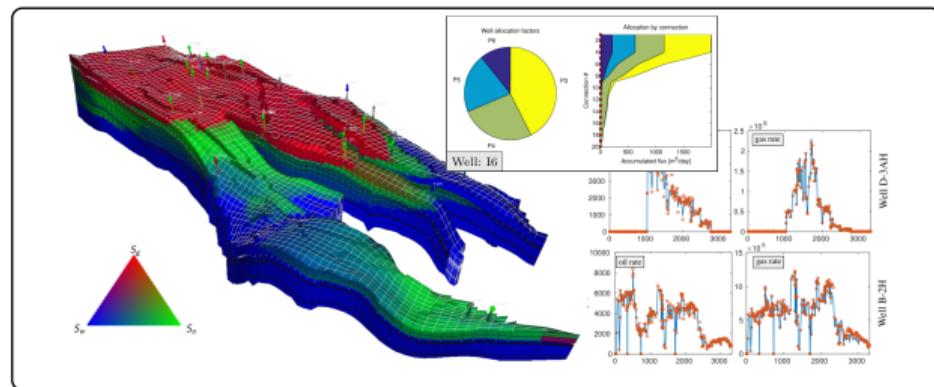
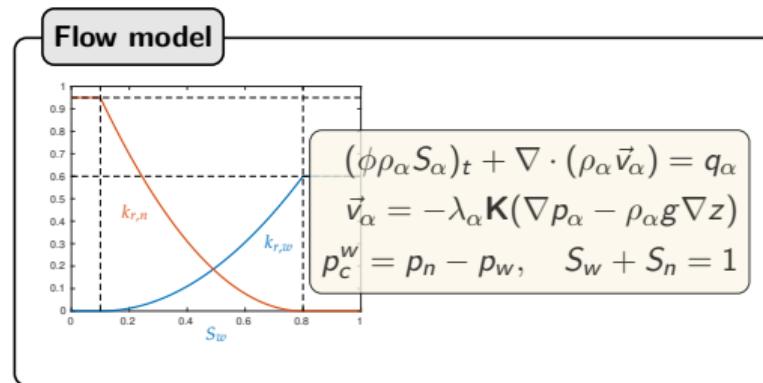
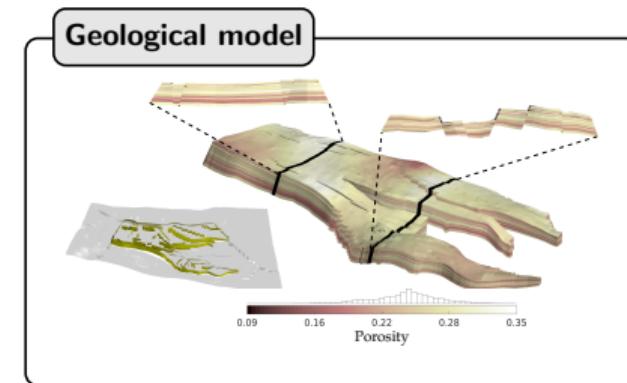
Introduction – Reservoir Simulation



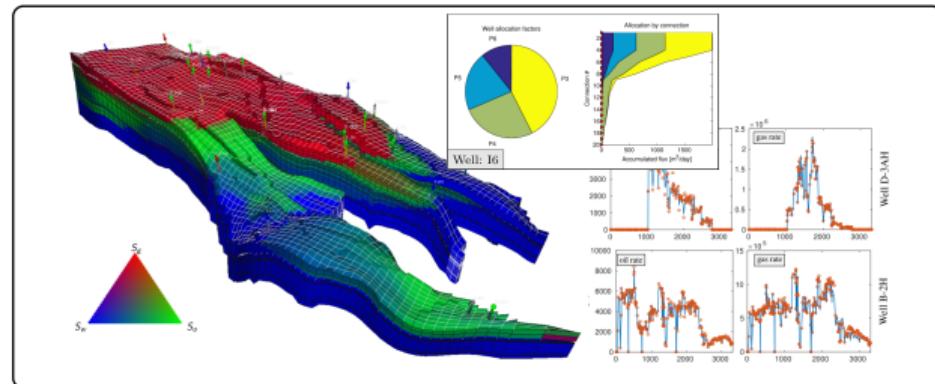
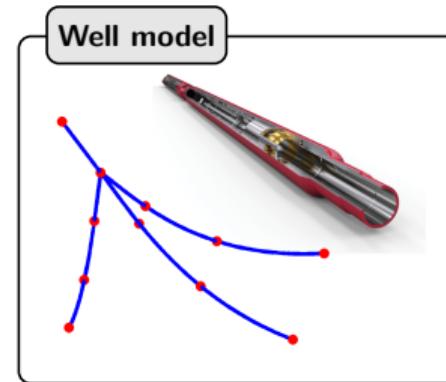
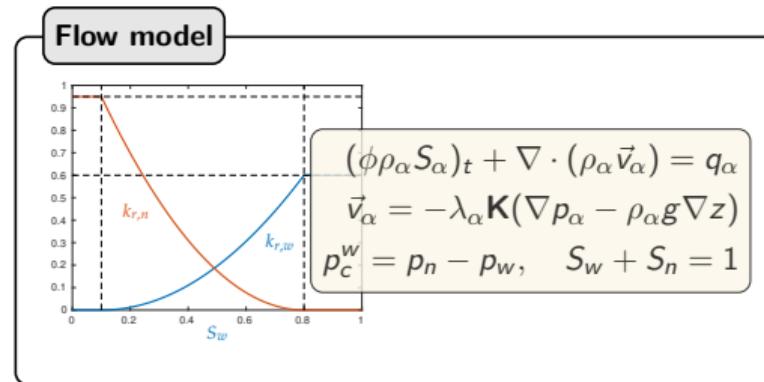
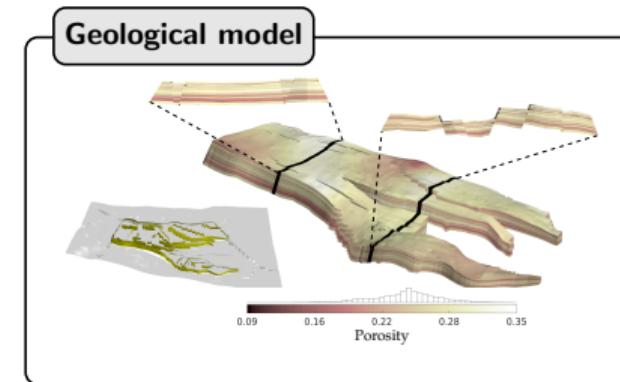
Introduction – Reservoir Simulation



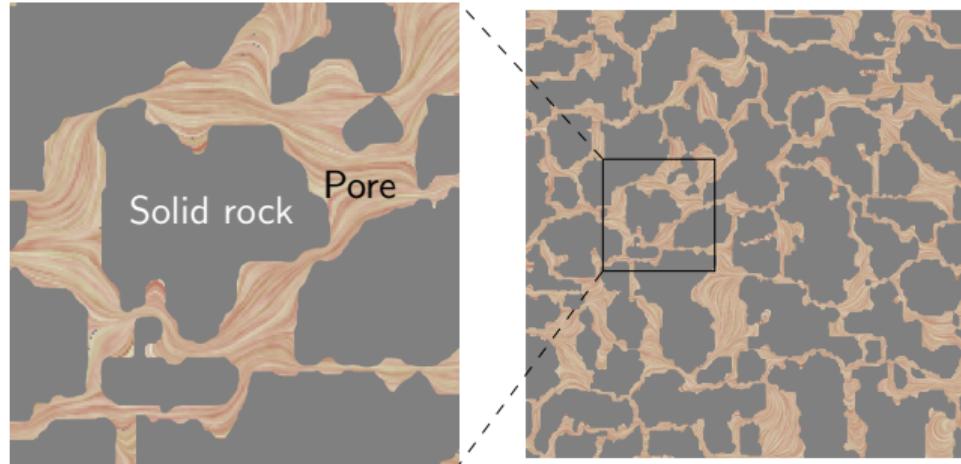
Introduction – Reservoir Simulation



Introduction – Reservoir Simulation

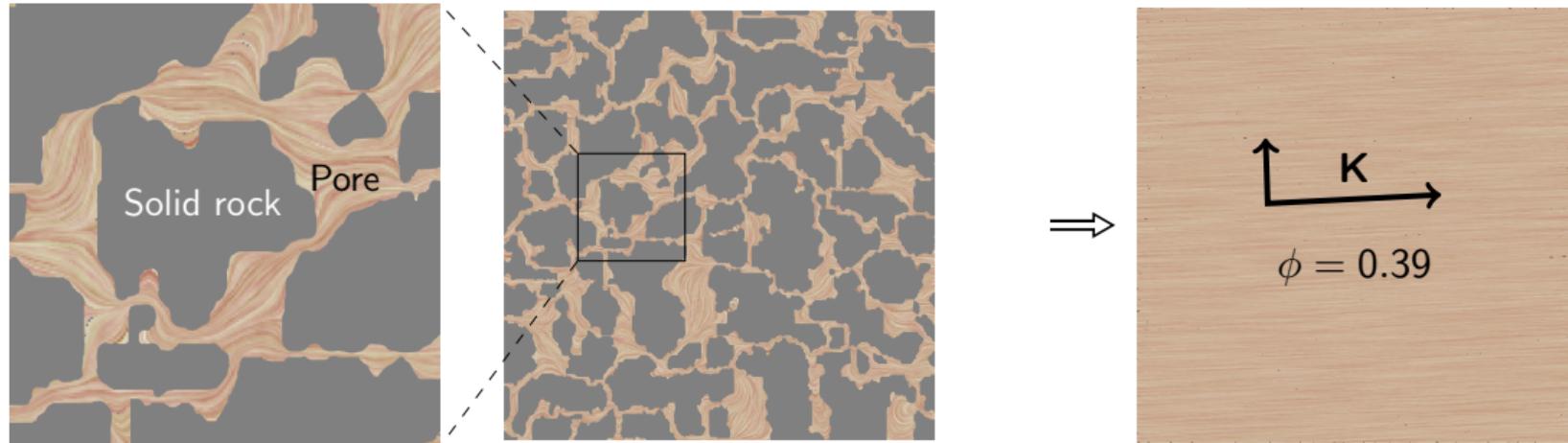


Flow in Porous Media – The Geological Model



- Flow in pore networks is complex, and requires extensive computer resources to simulate

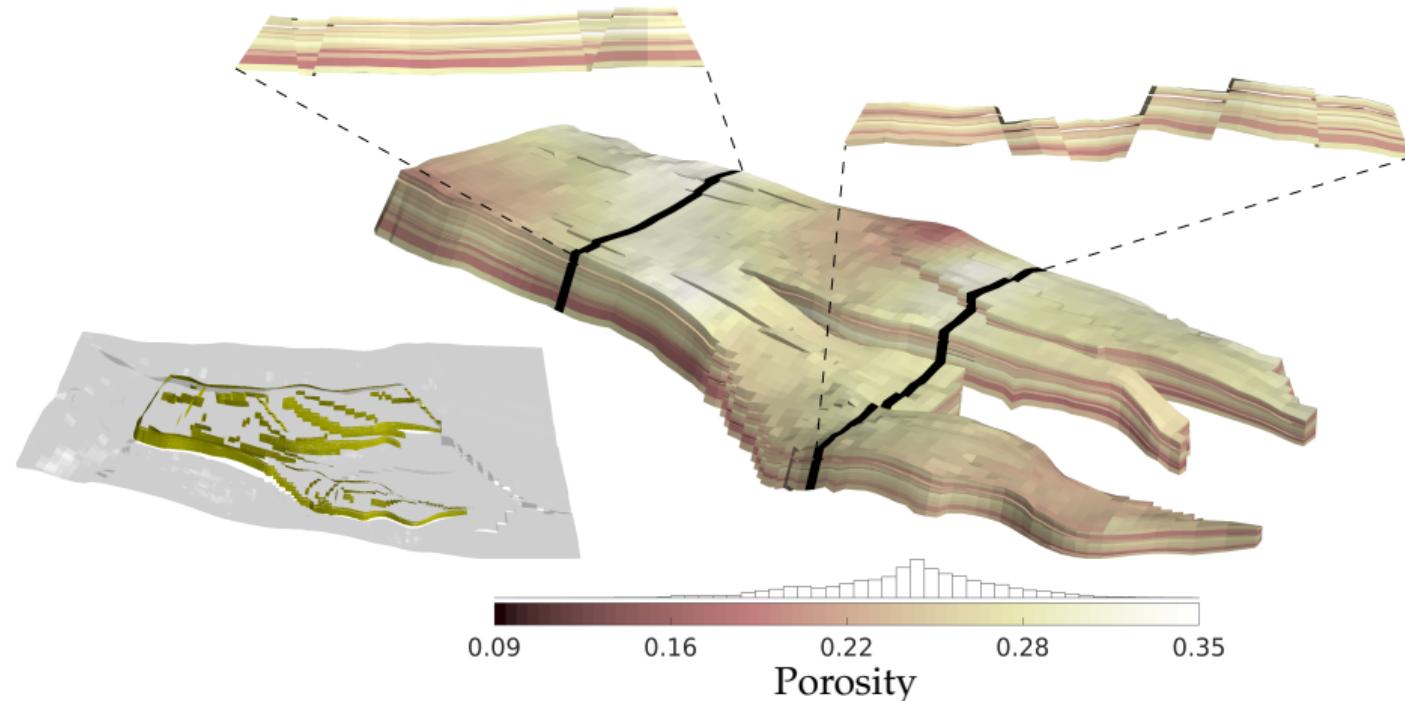
Flow in Porous Media – The Geological Model



- Flow in pore networks is complex, and requires extensive computer resources to simulate
- ... but we don't need this level of detail!
 - | Instead: approximate porous rock by *representative elementary volume* (REV)

K: permeability – rock's ability to transmit a fluid | ϕ : porosity – fraction of rock that is pore space

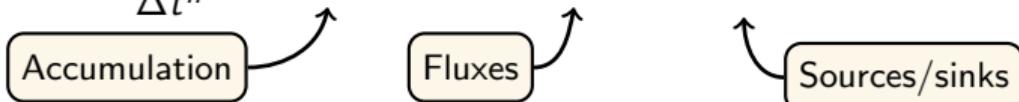
Flow in Porous Media – The Geological Model



Norne oil and gas field in the the Norwegian Sea, operated by Equinor

Flow in Porous Media – The Flow Model

- Conservation of mass of fluid phase α on semi-discrete, implicit, residual form

$$\mathcal{R}_\alpha^{n+1} = \frac{1}{\Delta t^n} (\mathcal{M}_\alpha^{n+1} - \mathcal{M}_\alpha^n) + \nabla \cdot \vec{\mathcal{F}}_\alpha^{n+1} - \mathcal{Q}_\alpha^{n+1} = 0, \quad \alpha = a, \ell, v$$


- For immiscible multiphase flow, we have

$$\mathcal{M}_\alpha = \phi \rho_\alpha S_\alpha, \quad \vec{\mathcal{F}}_\alpha = \rho_\alpha \vec{v}_\alpha, \quad \mathcal{Q}_\alpha = \rho_\alpha q_\alpha$$

- Darcy velocity \vec{v}_α given by Darcy's law

$$\vec{v}_\alpha = -\lambda_\alpha \mathbf{K} (\nabla p_\alpha - \rho_\alpha g \nabla z), \quad \lambda_\alpha = \frac{k_{r,\alpha}}{\mu_\alpha}$$

- Closure relations

$$S_a + S_\ell + S_v = 1, \quad p_c^\alpha = p_\ell - p_\alpha \quad \text{for } \alpha = a, v$$

Flow in Porous Media – The Flow Model

Sequential splitting – flow and transport

- Physical quantities in $\mathcal{R}_\alpha = 0$ exhibit very different mathematical character

flow variables, e.g. p, \vec{v}
elliptic

transport variables, e.g. S_α
hyperbolic

Flow in Porous Media – The Flow Model

Sequential splitting – flow and transport

- Physical quantities in $\mathcal{R}_\alpha = 0$ exhibit very different mathematical character

$$\underbrace{\text{flow variables, e.g. } p, \vec{v}}_{\text{elliptic}} \quad \underbrace{\text{transport variables, e.g. } S_\alpha}_{\text{hyperbolic}}$$

- Flow equation: weighted sum of conservation equations

$$\mathcal{R}_F^{n+1} = \sum_{\alpha=a,\ell,v} \omega_\alpha \mathcal{R}_\alpha^{n+1} = 0, \quad \text{where} \quad \sum_{\alpha=a,\ell,v} \partial_u (\omega_\alpha \mathcal{M}_\alpha^{n+1}) = 0 \quad \text{for } u \neq p$$

Flow in Porous Media – The Flow Model

Sequential splitting – flow and transport

- Physical quantities in $\mathcal{R}_\alpha = 0$ exhibit very different mathematical character

$$\underbrace{\text{flow variables, e.g. } p, \vec{v}}_{\text{elliptic}} \quad \underbrace{\text{transport variables, e.g. } S_\alpha}_{\text{hyperbolic}}$$

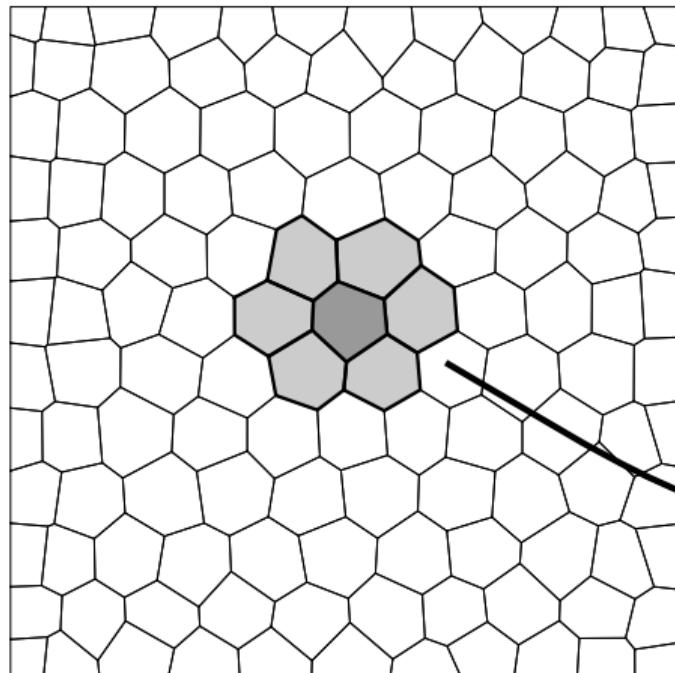
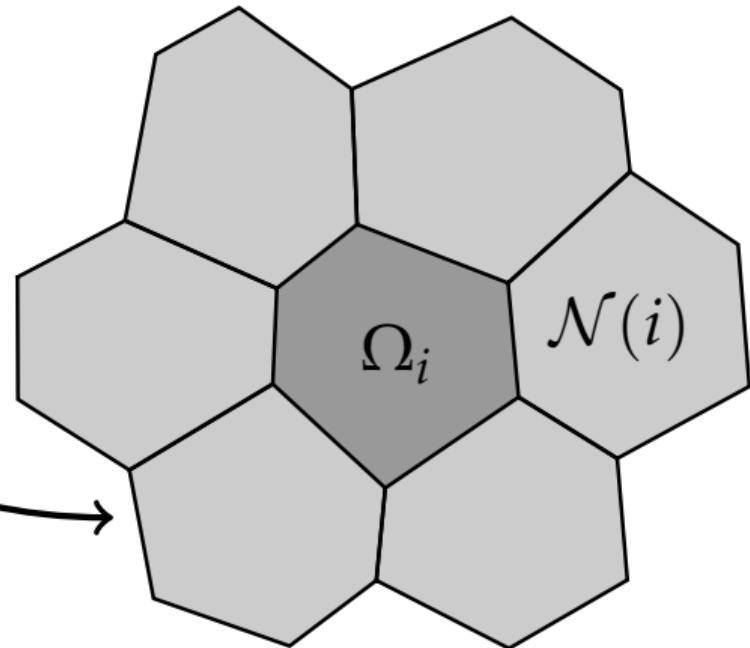
- Flow equation: weighted sum of conservation equations

$$\mathcal{R}_F^{n+1} = \sum_{\alpha=a,\ell,v} \omega_\alpha \mathcal{R}_\alpha^{n+1} = 0, \quad \text{where} \quad \sum_{\alpha=a,\ell,v} \partial_u (\omega_\alpha \mathcal{M}_\alpha^{n+1}) = 0 \quad \text{for } u \neq p$$

- Transport equations: $\mathcal{R}_\alpha = 0$ with \vec{v}_α redefined with total velocity $\vec{v} = \vec{v}_a + \vec{v}_\ell + \vec{v}_v$

$$\vec{v}_\alpha = f_\alpha \left(\vec{v} + \mathbf{K} \sum_{\beta=a,\ell,v} \lambda_\beta [\vec{G}_\alpha - \vec{G}_\beta] \right), \quad f_\alpha = \frac{\lambda_\alpha}{\lambda_a + \lambda_\ell + \lambda_v} \quad \text{and} \quad \vec{G}_\alpha = \rho_\alpha g \nabla z - \nabla p_c^\alpha$$

Discretization



Spatial discretization

- Integrate residual equations over each cell in space → finite-volume discretization

$$\mathcal{R}_\alpha^{n+1} = \frac{1}{\Delta t^n} (\mathcal{M}_\alpha^{n+1} - \mathcal{M}_\alpha^n) + \nabla \cdot \mathcal{F}_\alpha^{n+1} - \mathcal{Q}_\alpha^{n+1} = 0$$

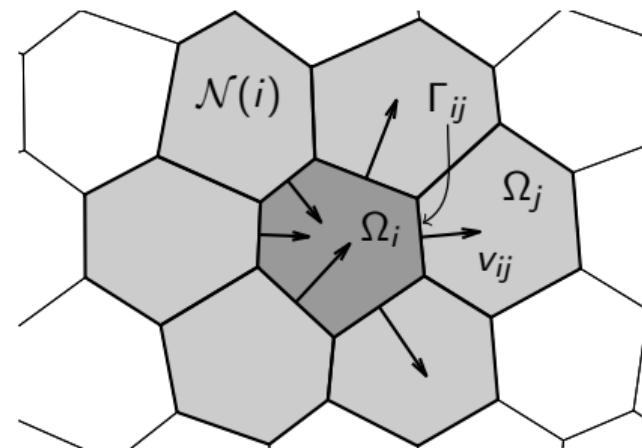
Discretization

Spatial discretization

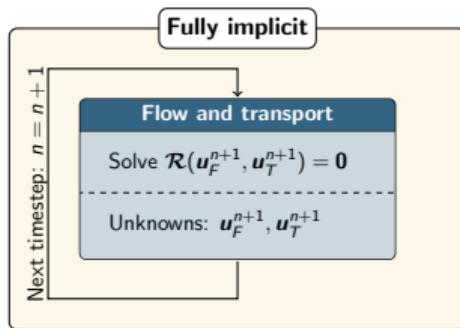
- Integrate residual equations over each cell in space → finite-volume discretization

$$\int_{\Omega_i} \mathcal{R}_\alpha^{n+1} dV = \frac{1}{\Delta t^n} \int_{\Omega_i} (\mathcal{M}_\alpha^{n+1} - \mathcal{M}_\alpha^n) dV + \int_{\Omega_i} \nabla \cdot \vec{\mathcal{F}}_\alpha^{n+1} dV - \int_{\Omega_i} \mathcal{Q}_\alpha^{n+1} dV = 0$$

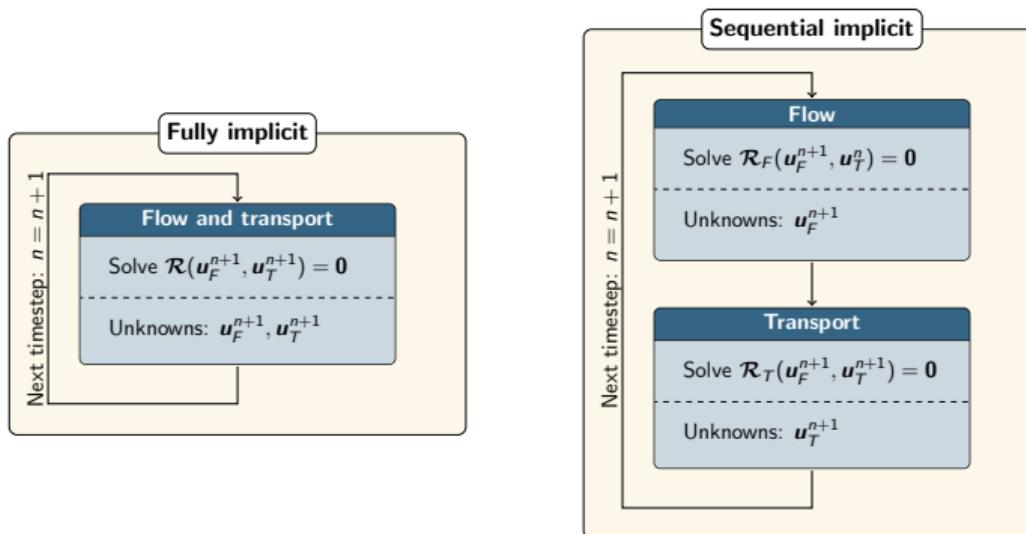
$$\int_{\Omega_i} \mathcal{M}_\alpha dV \approx |\Omega_i| \mathcal{M}_{\alpha,i} \quad \text{Mass terms}$$
$$\int_{\Omega_i} \nabla \cdot \vec{\mathcal{F}}_\alpha dV \approx \sum_{j \in \mathcal{N}(i)} \mathcal{F}_{\alpha,ij} \quad \text{Flux terms}$$
$$\int_{\Omega_i} \mathcal{Q}_{\alpha,i} dV \approx |\Omega_i| \mathcal{Q}_{\alpha,i} \quad \text{Source terms}$$



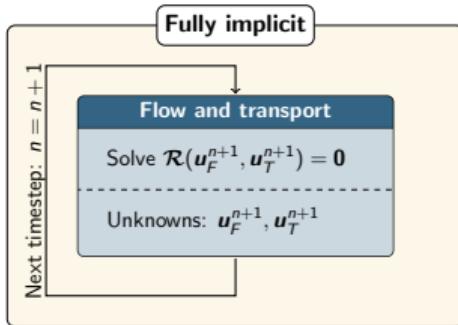
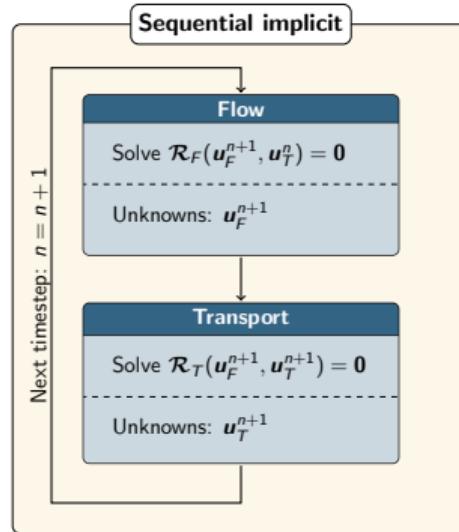
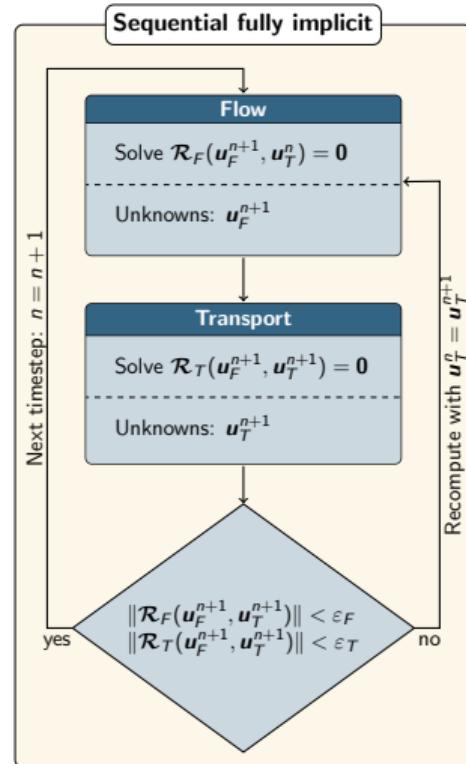
Solution Strategies



Solution Strategies



Solution Strategies



Solution Strategies – Newton's Method

Each strategy involves solving system of *nonlinear* residual equations $\mathcal{R}(\mathbf{u}) = \mathbf{0}$

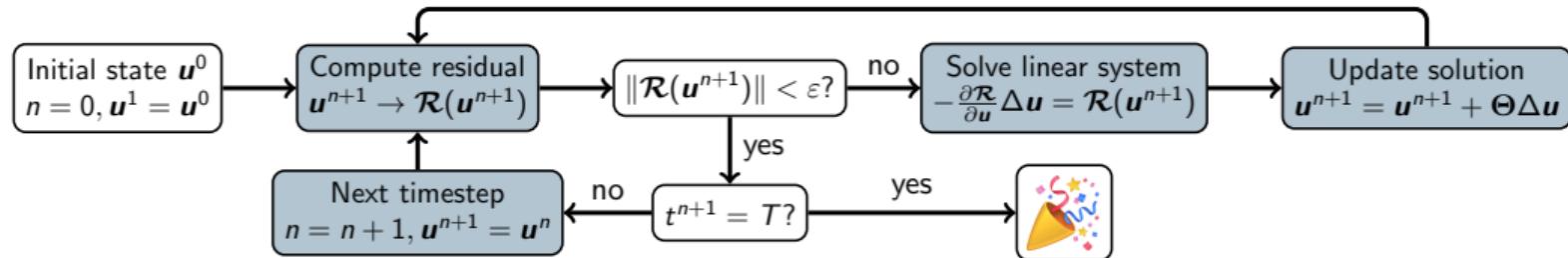
- Assume $\mathcal{R}(\mathbf{u} + \Delta\mathbf{u}) = \mathbf{0}$, and linearize around \mathbf{u}

$$\mathbf{0} = \mathcal{R}(\mathbf{u} + \Delta\mathbf{u}) = \mathcal{R}(\mathbf{u}) + \frac{\partial \mathcal{R}}{\partial \mathbf{u}} \Delta\mathbf{u} + \mathcal{O}(\|\Delta\mathbf{u}\|^2)$$

- Neglect higher-order terms \rightarrow Newton's method

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \Delta\mathbf{u}, \quad \text{where} \quad -\frac{\partial \mathcal{R}}{\partial \mathbf{u}} \Delta\mathbf{u} = \mathcal{R}(\mathbf{u}^k)$$

Solution Strategies – Newton's Method



Part II

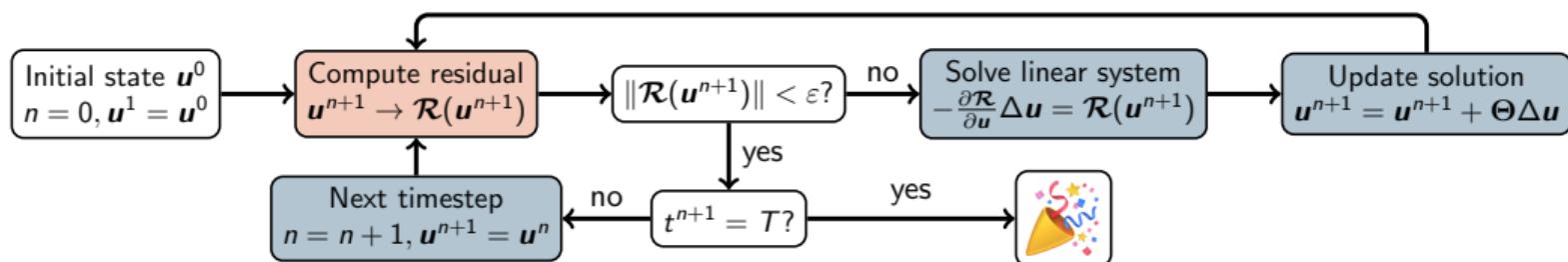
Scientific Papers

Paper I – III: Unstructured Gridding and Consistent Discretizations

I: **Unstructured Gridding and Consistent Discretizations for Reservoirs With Faults and Complex Wells**
Øystein S. Klemetsdal, Runar Lie Berge, Knut-Andreas Lie, Halvor Møll Nilsen, Olav Møyner
In proceedings of the 2017 SPE Reservoir Simulation Conference, Montgomery, Texas, USA
DOI: 10.2118/182666-MS

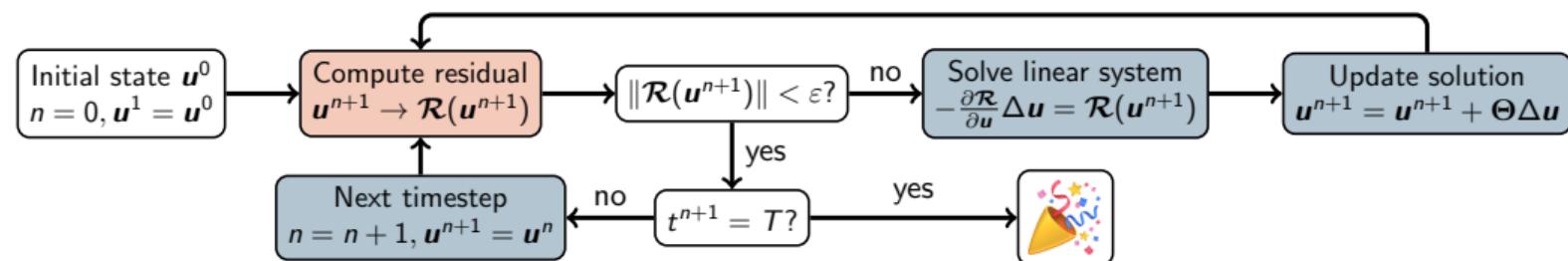
II: **Unstructured Voronoi Grids Conforming to Lower-dimensional Objects**
Runar Lie Berge, Øystein S. Klemetsdal, Knut-Andreas Lie
Computational Geosciences, volume 23, issue 1, pp. 169–188, 2019
DOI: 10.1007/s10596-018-9790-0

III: **A Comparison of Consistent Discretizations for Elliptic Poisson-Type Problems on Unstructured Polyhedral Grids**
Øystein S. Klemetsdal, Olav Møyner, Xavier Raynaud, Knut-Andreas Lie
Manuscript in preparation, 2019

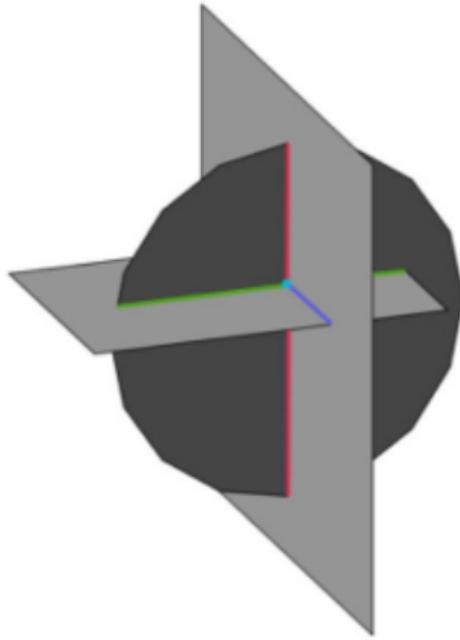
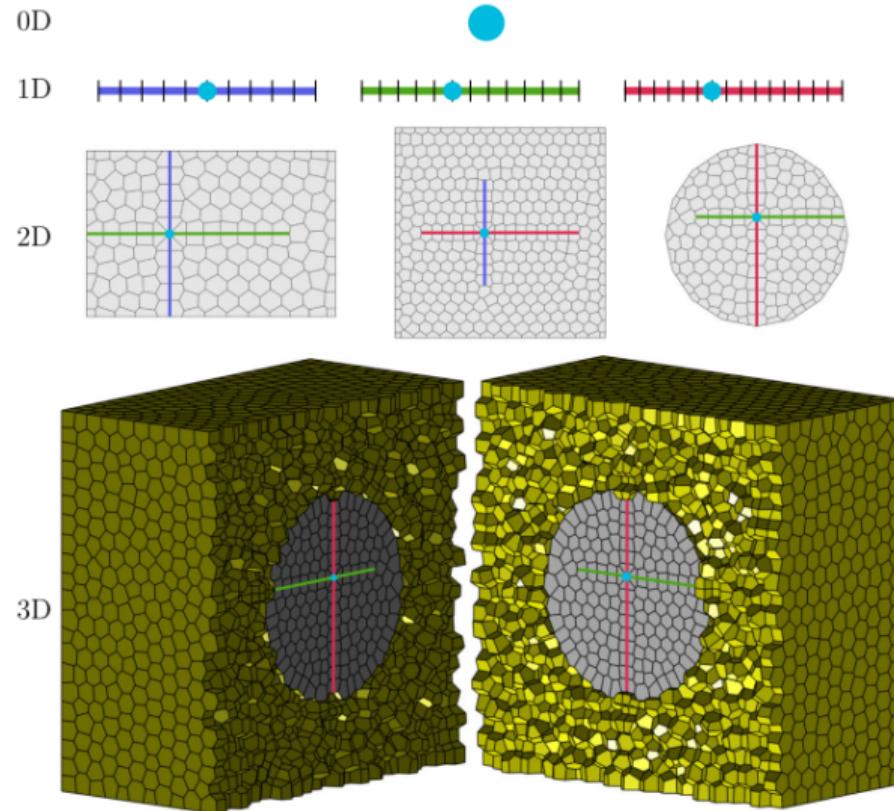


Paper I – III: Unstructured Gridding and Consistent Discretizations

- The computational grid has a direct impact on the quality of the numerical solution
 - Conform to intersecting faults, fractures, well trajectories
[Branets et al., 2009, Manzoor et al., 2018, Toor et al., 2015] ...
- ... but what is the best computational grid will depend on the specific discretization
 - Linear/nonlinear two-point, multipoint, mimetic, virtual elements, etc.
[Le Potier, 2009, Aavatsmark et al., 1994, Brezzi et al., 2005] ...



Paper I – III: Unstructured Gridding and Consistent Discretizations



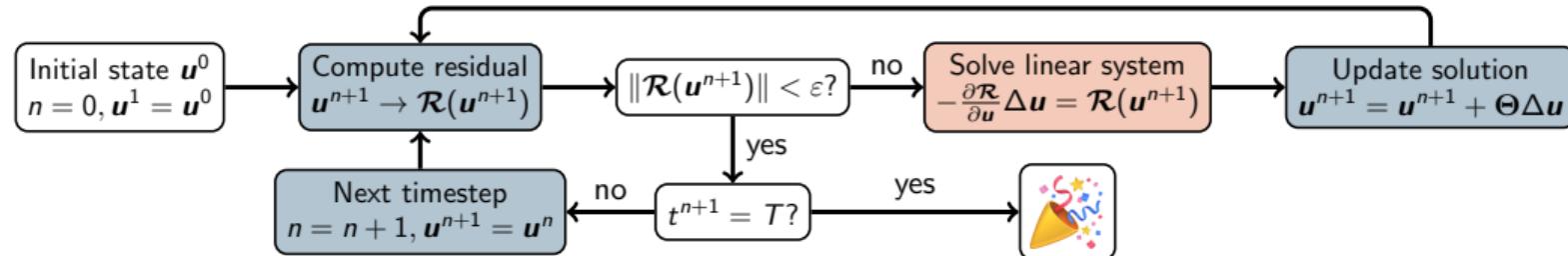
Paper IV: Multiscale Simulation with Dynamically Adapted Basis Functions

IV: Accelerating Multiscale Simulation of Complex Geomodels by Use of Dynamically Adapted Basis Functions

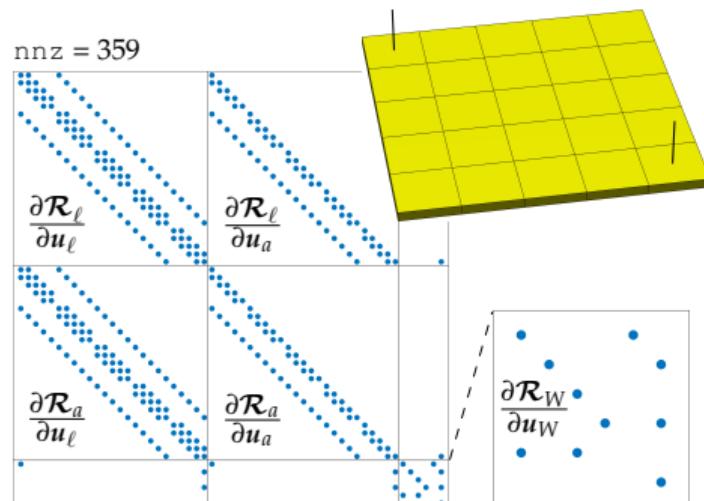
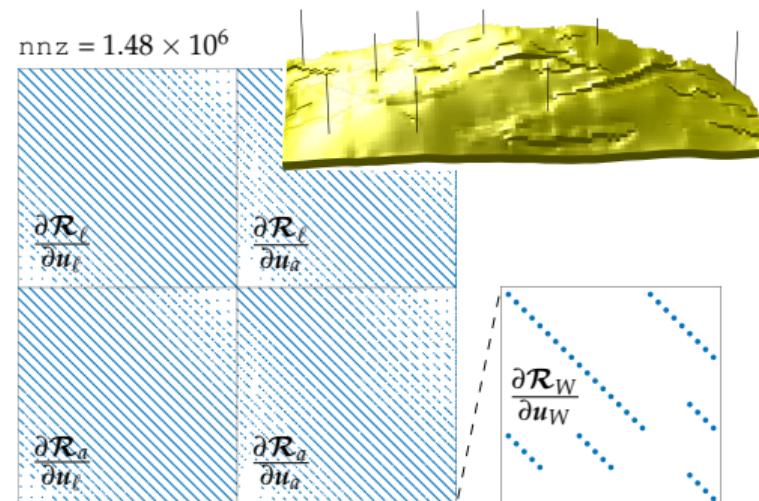
Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie

Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-9827-z



Paper IV: Multiscale Simulation with Dynamically Adapted Basis Functions



- Solving linearized systems typically accounts for a large portion of simulation time
 - Mixed elliptic/hyperbolic character → pressure is a strong variable
 - Large aspect ratios and variations in rock properties → ill-conditioned systems
- Efficient iterative linear solvers with efficient preconditioners are therefore crucial
 - Constrained pressure residual (CPR): physics-based preconditioner [Wallis et al., 1985]

Paper V-VI: Adaptive Interface-Localized Trust Region Solver

V: Non-linear Newton Solver for a Polymer Two-phase System Using Interface-localized Trust Regions

Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie

In proceedings of the 19th European Symposium on Improved Oil Recovery, 2017, Stavanger, Norway

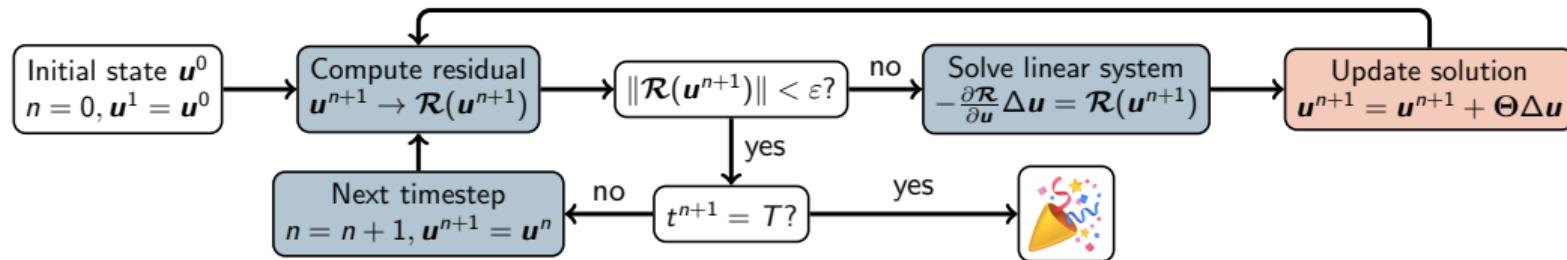
DOI: 10.3997/2214-4609.201700356

VI: Robust Nonlinear Newton Solver with Adaptive Interface-Localized Trust Regions

Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie

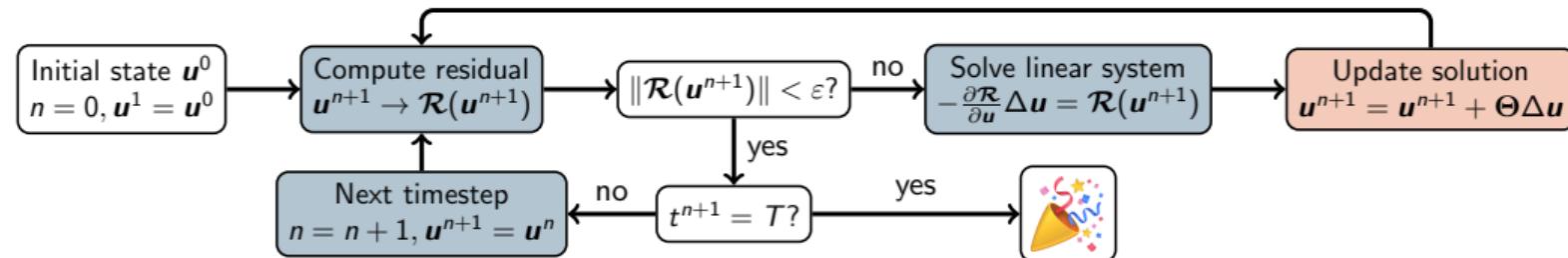
SPE Journal, volume 24, issue 4, pp. 1576–1594, 2019

DOI: 10.2118/195682-PA

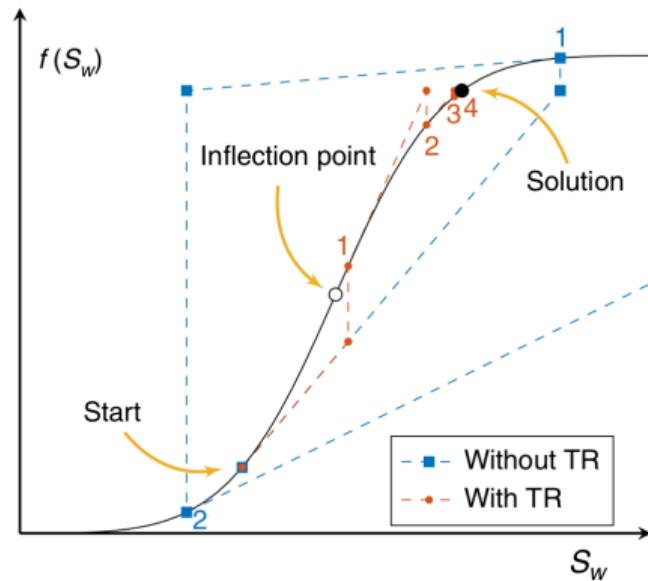


Paper V–VI: Adaptive Interface-Localized Trust Region Solver

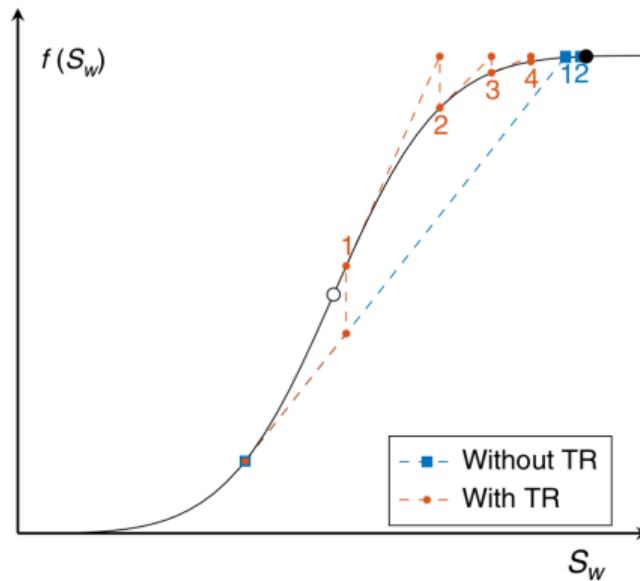
- Transport problems are often very challenging for the nonlinear solver
 - Update $\Delta \mathbf{u}$ may send solution into different contraction regions
 - ... or cause changes in upstream direction
- Often caused by too long timestep
 - Whatever-works-approach: reduce timestep if solver has not converged after N iterations
 - Potentially large amount of wasted computational effort



Paper V–VI: Adaptive Interface-Localized Trust Region Solver



(a) Newton's method fails to converge



(b) TR solver is overly restrictive

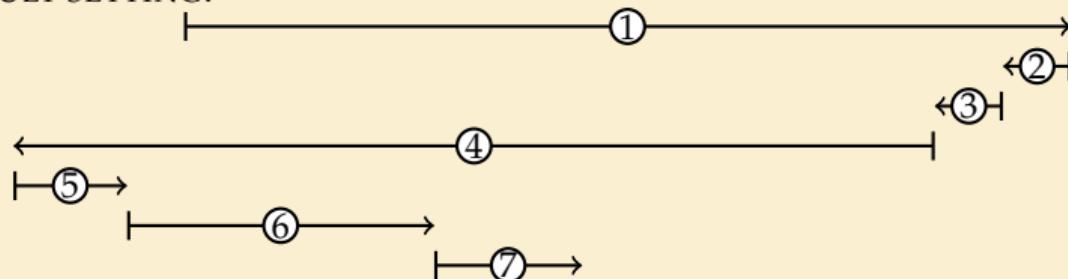
- Unconditional convergence by using trust regions [Jenny et al., 2009, Møyner, 2017]
... but computing trust regions is expensive, and damping may be overly restrictive

Paper V–VI: Adaptive Interface-Localized Trust Region Solver

RESTRICTIVE:

n_{osc}	n_{TR}
0	1
0	0

DEFAULT SETTING:



n_{osc}	n_{TR}
0	0
1	2
1	1
1	0
2	3
2	2
2	1

→ Newton path

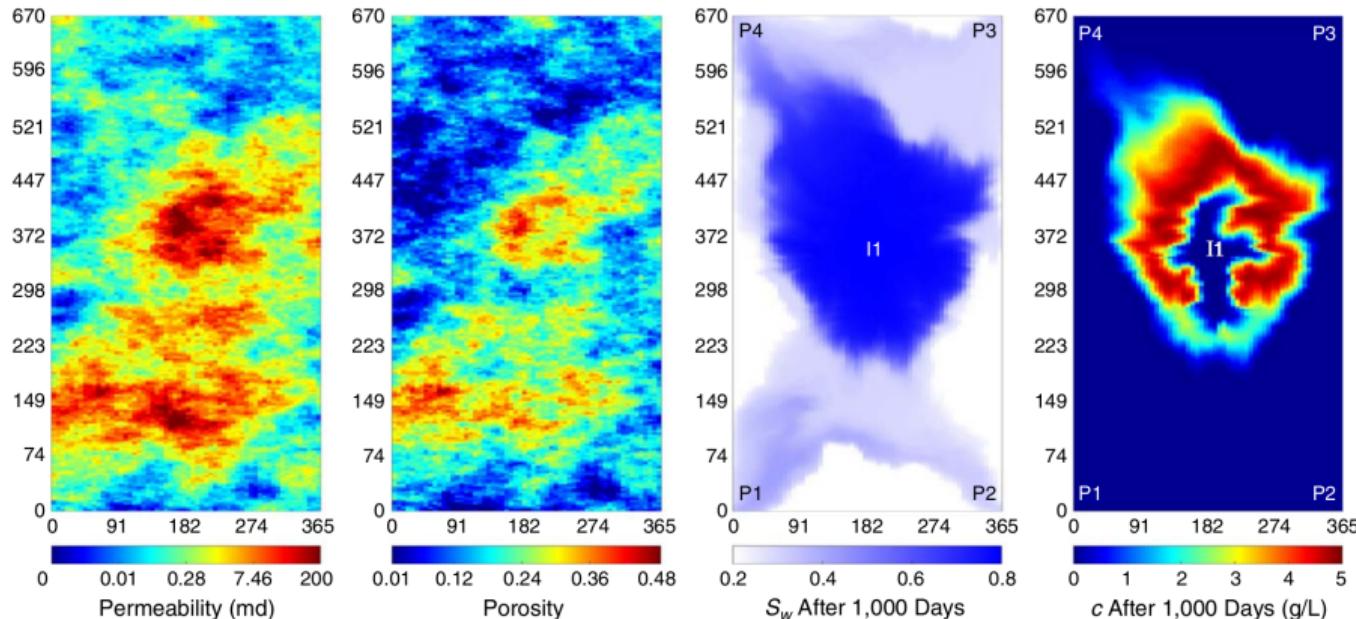
○ Inflection point

● Solution

→ Iteration

Paper V–VI: Adaptive Interface-Localized Trust Region Solver

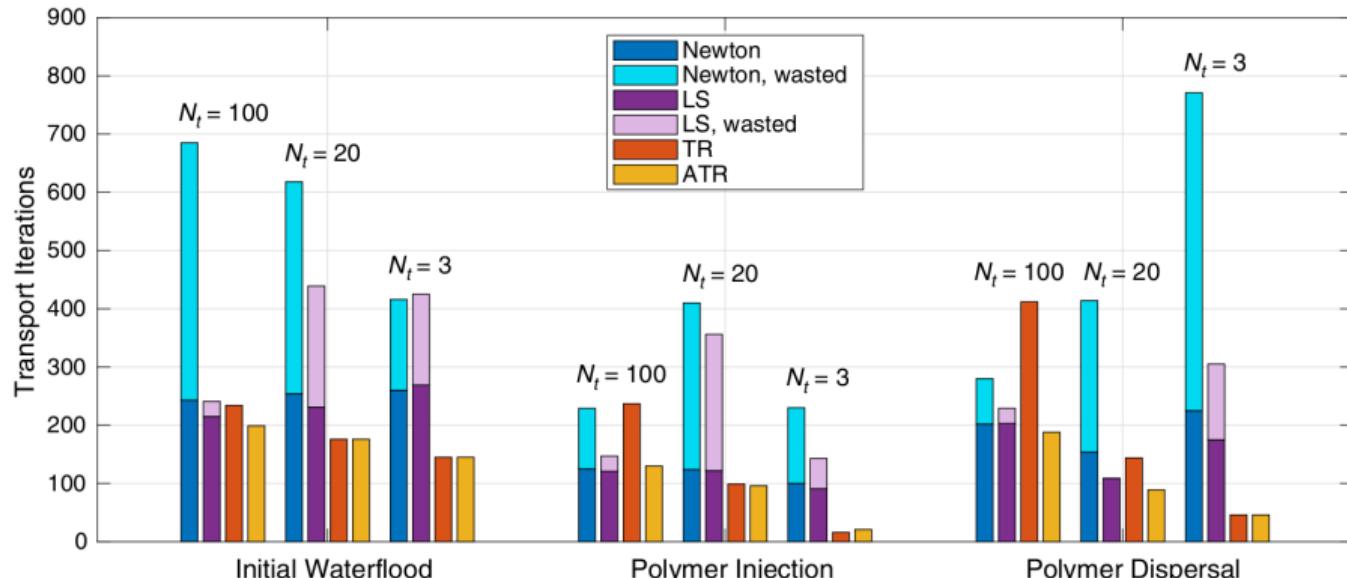
Example: Layer 10 of SEP10 Model 2



- Quadratic relative permeabilities, slightly compressible fluids/rock
- Simulate water + polymer slug + water over 2000 days using 100, 20, and 3 (!) timesteps
 - Water/polymer interplay + long timesteps challenging for nonlinear solver

Paper V–VI: Adaptive Interface-Localized Trust Region Solver

Example: Layer 10 of SEP10 Model 2



- Trust region: no wasted iterations even with only 3 timesteps
- Adaptive trust-region solver significantly better for modest timesteps

Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

VII: Efficient Reordered Nonlinear Gauss-Seidel Solvers With Higher Order For Black-Oil Models

Øystein S. Klemetsdal, Atgeirr Flø Rasmussen, Olav Møyner, Knut-Andreas Lie

Computational Geosciences, published ahead of print, 2019

DOI: 10.1007/s10596-019-09844-5

VIII: Implicit High-resolution Compositional Simulation with Optimal Ordering of Unknowns and Adaptive Spatial Refinement

Øystein S. Klemetsdal, Olav Møyner, Knut-Andreas Lie

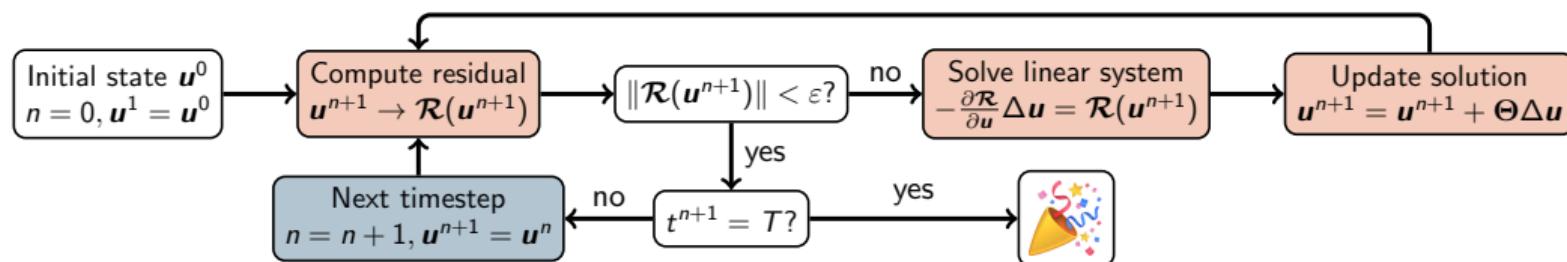
In proceedings of the 2019 SPE Reservoir Simulation Conference, Galveston, Texas, USA

DOI: 10.2118/193934-MS

IX: Dynamic Coarsening and Local Reordered Nonlinear Solvers for Simulating Transport in Porous Media

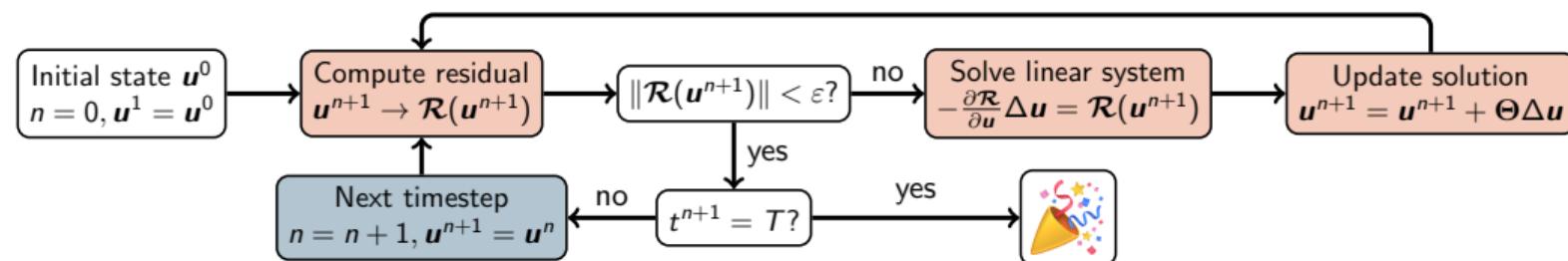
Øystein S. Klemetsdal, Knut-Andreas Lie

Manuscript in preparation, 2019



Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

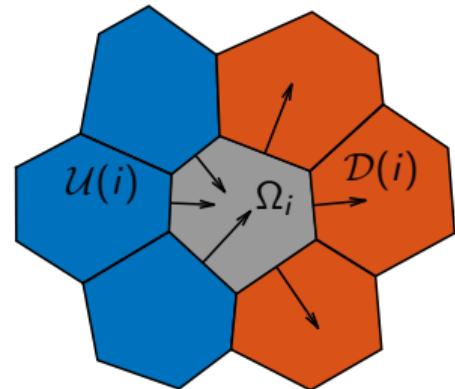
- Hyperbolic transport problems have *finite speed of propagation*
 - Updates $\Delta \mathbf{u}$ typically > 0 only near propagating fluid fronts and wells
 - Newton solver uses substantial efforts to compute zeros!
- Particularly true for real reservoir models: flow mainly restricted to drainage regions



- Solve flow problem $\mathcal{R}_F = 0 \rightarrow$ pressure and intercell fluxes
- Split neighbors $\mathcal{N}(i)$ into upstream $\mathcal{U}(i)$ and downstream $\mathcal{D}(i)$

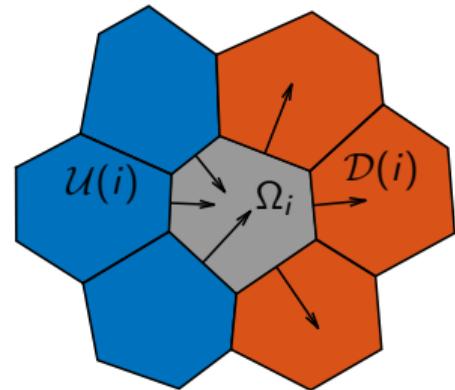
$$\frac{1}{\Delta t^n}(\mathcal{M}_i^{n+1} - \mathcal{M}_i^n) + \sum_{j \in \mathcal{N}(i)} \mathcal{F}_{ij}^{n+1} - \mathcal{Q}_i^{n+1} = 0$$

- Solve flow problem $\mathcal{R}_F = 0 \rightarrow$ pressure and intercell fluxes
- Split neighbors $\mathcal{N}(i)$ into upstream $\mathcal{U}(i)$ and downstream $\mathcal{D}(i)$



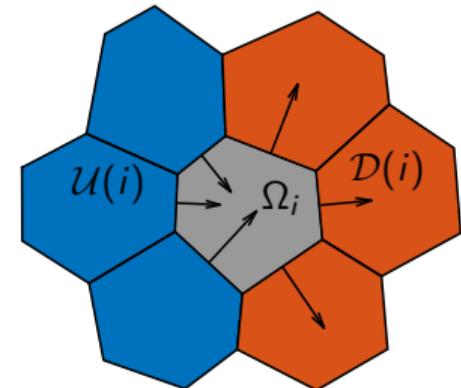
$$\frac{1}{\Delta t^n}(\mathcal{M}_i^{n+1} - \mathcal{M}_i^n) + \sum_{j \in \mathcal{U}(i)} \mathcal{F}_{ij}^{n+1} + \sum_{j \in \mathcal{D}(i)} \mathcal{F}_{ij}^{n+1} - \mathcal{Q}_i^{n+1} = 0$$

- Solve flow problem $\mathcal{R}_F = 0 \rightarrow$ pressure and intercell fluxes
- Split neighbors $\mathcal{N}(i)$ into upstream $\mathcal{U}(i)$ and downstream $\mathcal{D}(i)$



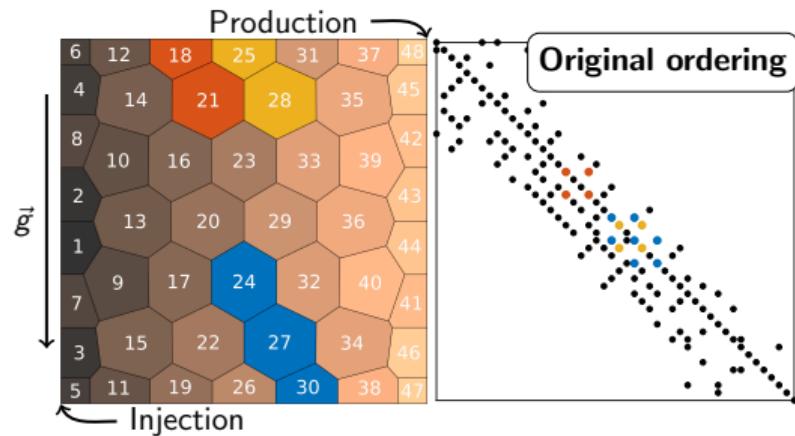
$$\frac{1}{\Delta t^n}(\mathcal{M}_i^{n+1} - \mathcal{M}_i^n) + \underbrace{\sum_{j \in \mathcal{U}(i)} \mathcal{F}_{ij}^{n+1}}_{\text{depend on values in } \mathcal{U}(i)} + \underbrace{\sum_{j \in \mathcal{D}(i)} \mathcal{F}_{ij}^{n+1} - \mathcal{Q}_i^{n+1}}_{\text{depend on values in } \Omega_i} = 0$$

- Solve flow problem $\mathcal{R}_F = 0 \rightarrow$ pressure and intercell fluxes
- Split neighbors $\mathcal{N}(i)$ into upstream $\mathcal{U}(i)$ and downstream $\mathcal{D}(i)$
- Only viscous forces: flux graph is acyclic (DAG)
 - Solve transport problems cell-by-cell in topological order
[Natvig and Lie, 2008, Lie et al., 2014]

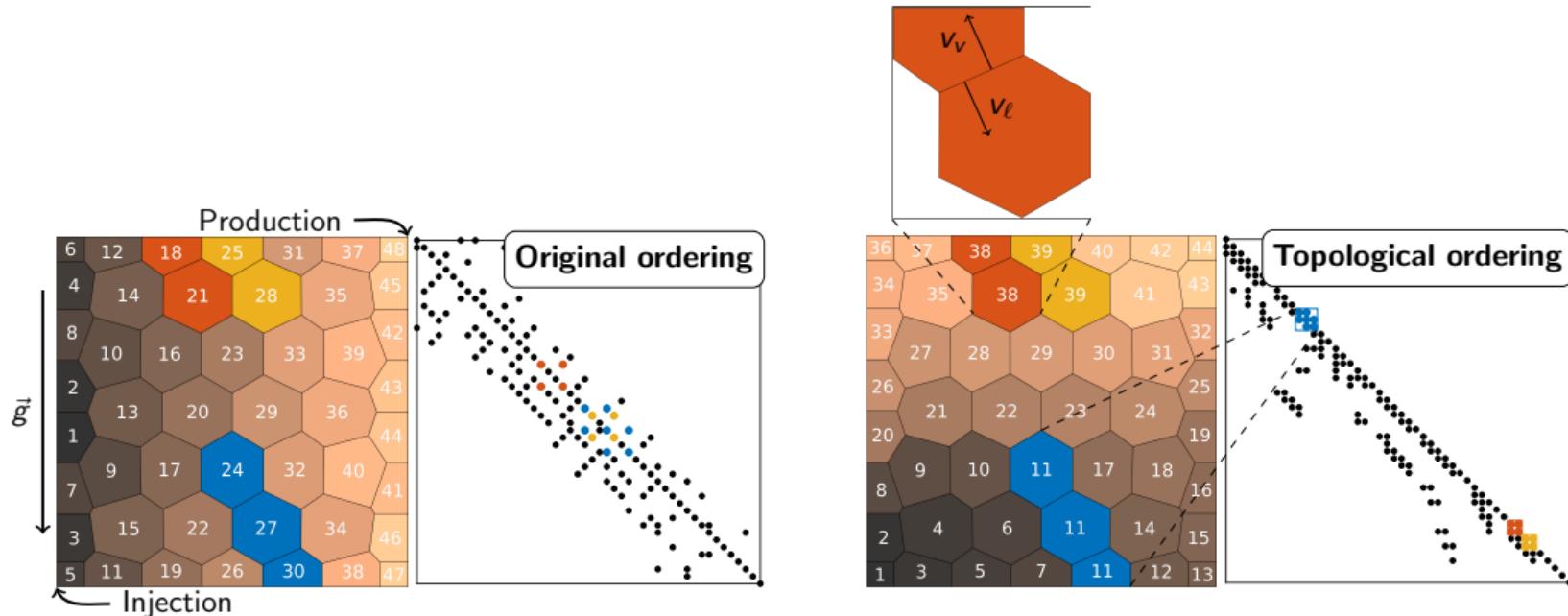


$$\frac{1}{\Delta t^n}(\mathcal{M}_i^{n+1} - \mathcal{M}_i^n) + \underbrace{\sum_{j \in \mathcal{U}(i)} \mathcal{F}_{ij}^{n+1}}_{\text{depend on values in } \mathcal{U}(i)} + \underbrace{\sum_{j \in \mathcal{D}(i)} \mathcal{F}_{ij}^{n+1} - \mathcal{Q}_i^{n+1}}_{\text{depend on values in } \Omega_i} = 0$$

Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

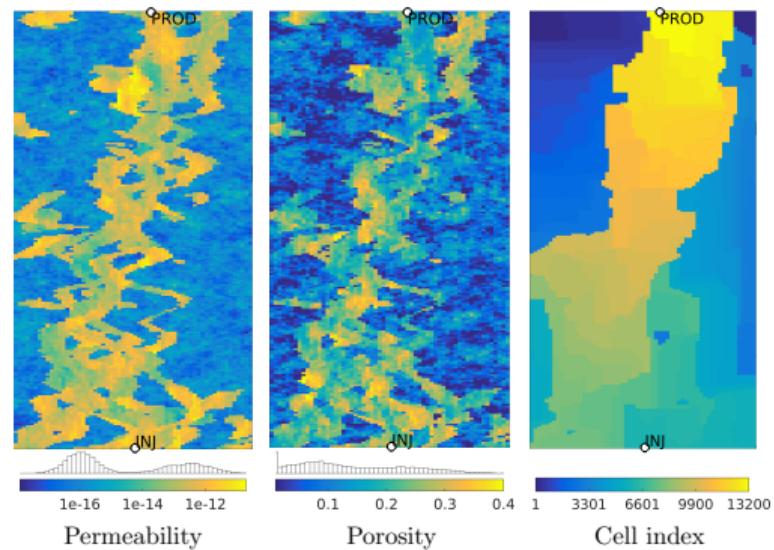


Paper VII–IX: Localized Reordered Nonlinear Transport Solvers

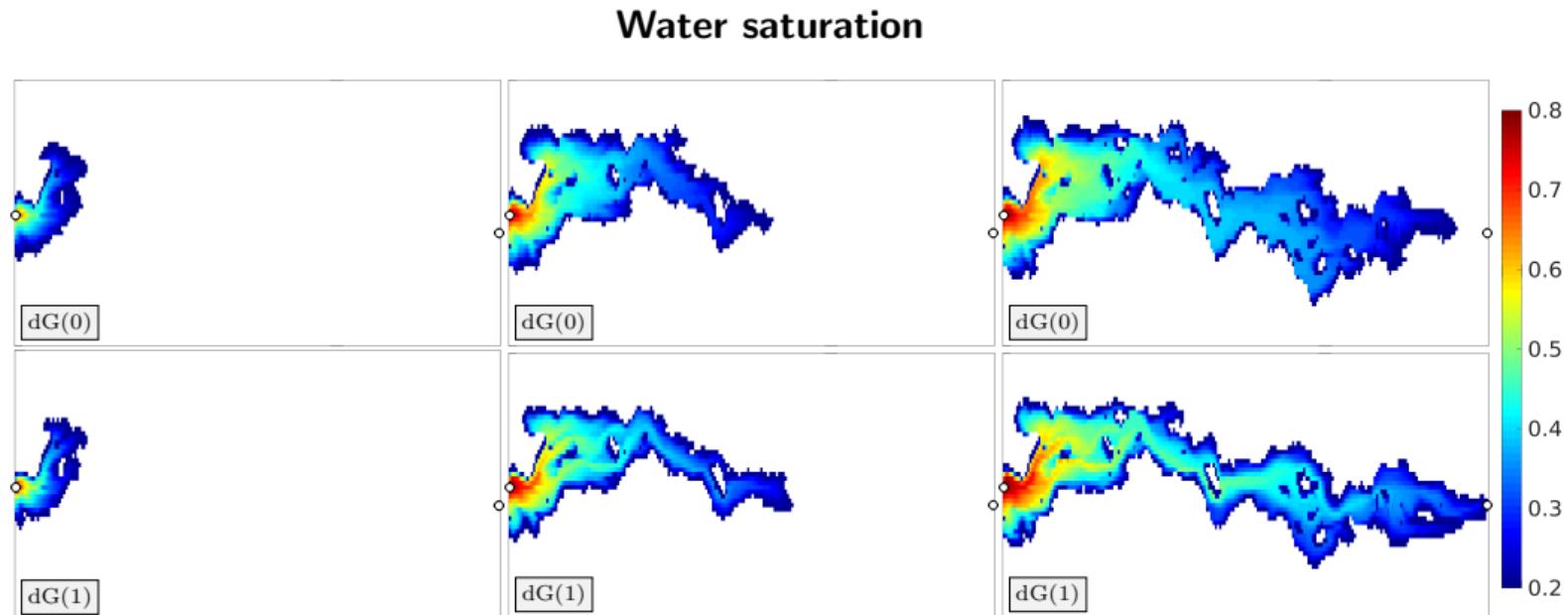


Example: Layer 50 of SPE 10 model 2

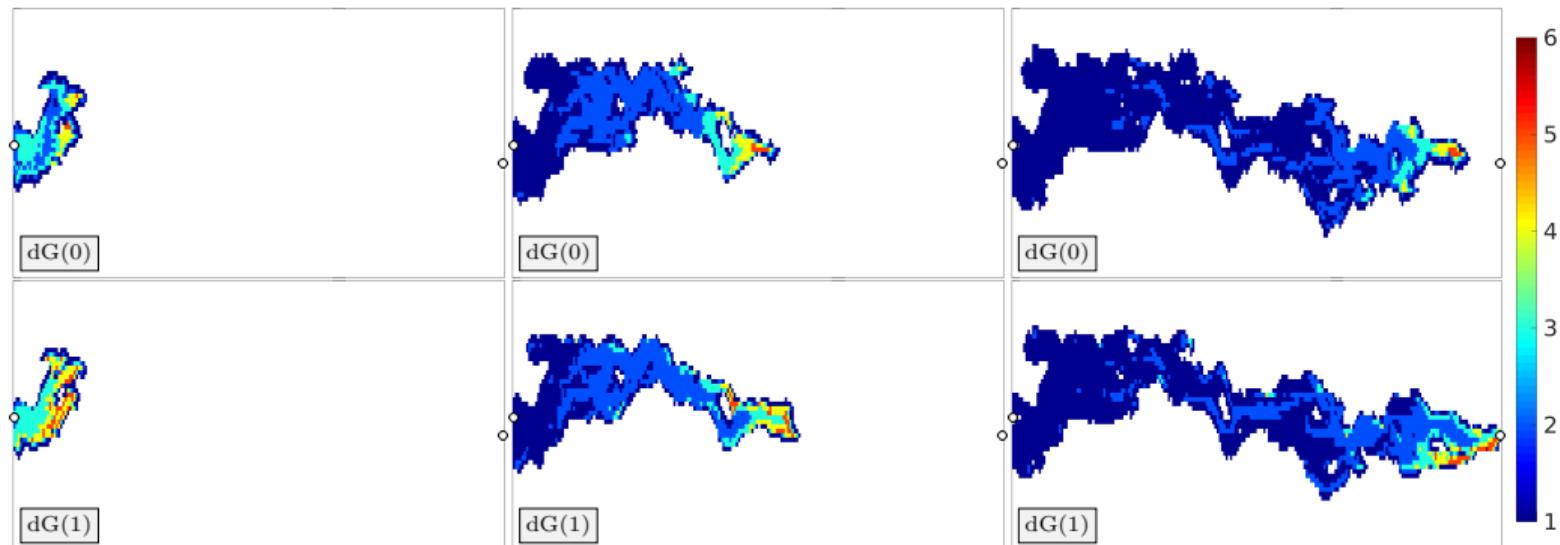
- Fluvial sandstone channels on mudstone
- Filled with oil, injection of 0.2 PV water
- Quadratic relative permeabilities
- Slightly compressible fluids/rock



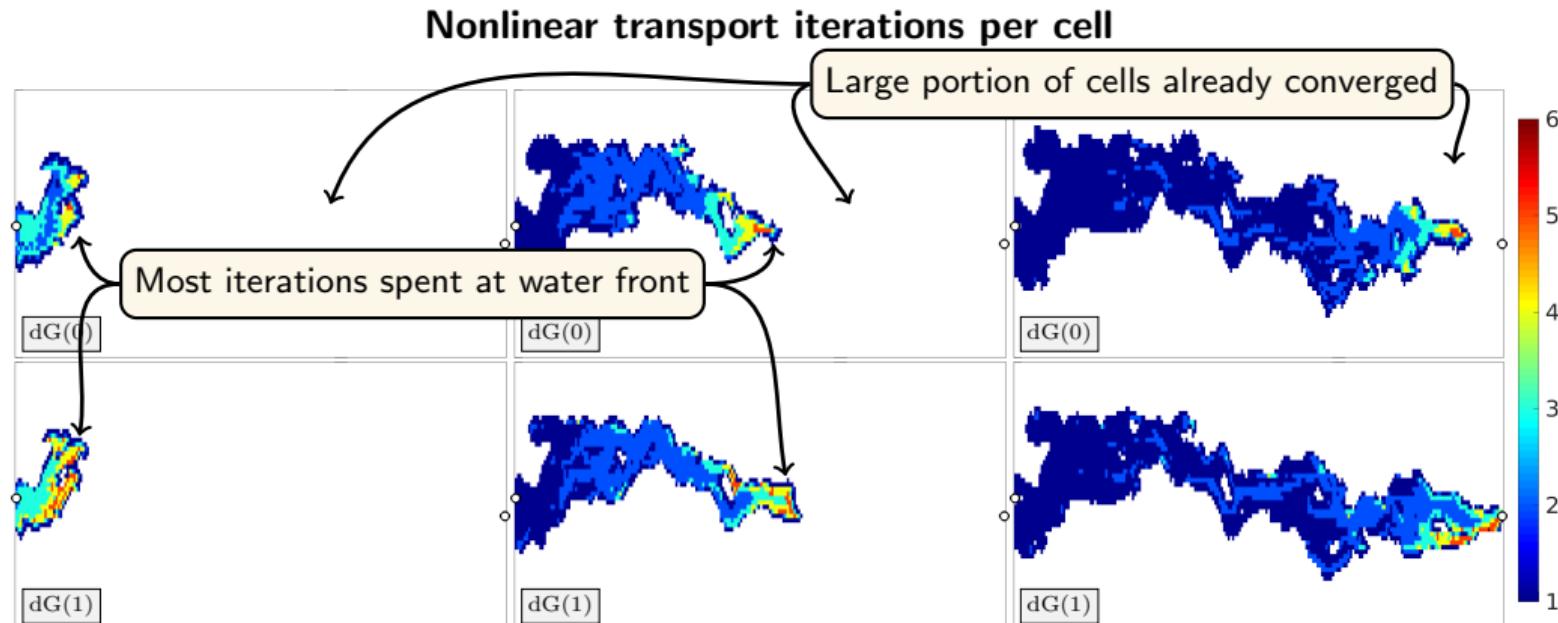
Paper VII–IX: Localized Reordered Nonlinear Transport Solvers



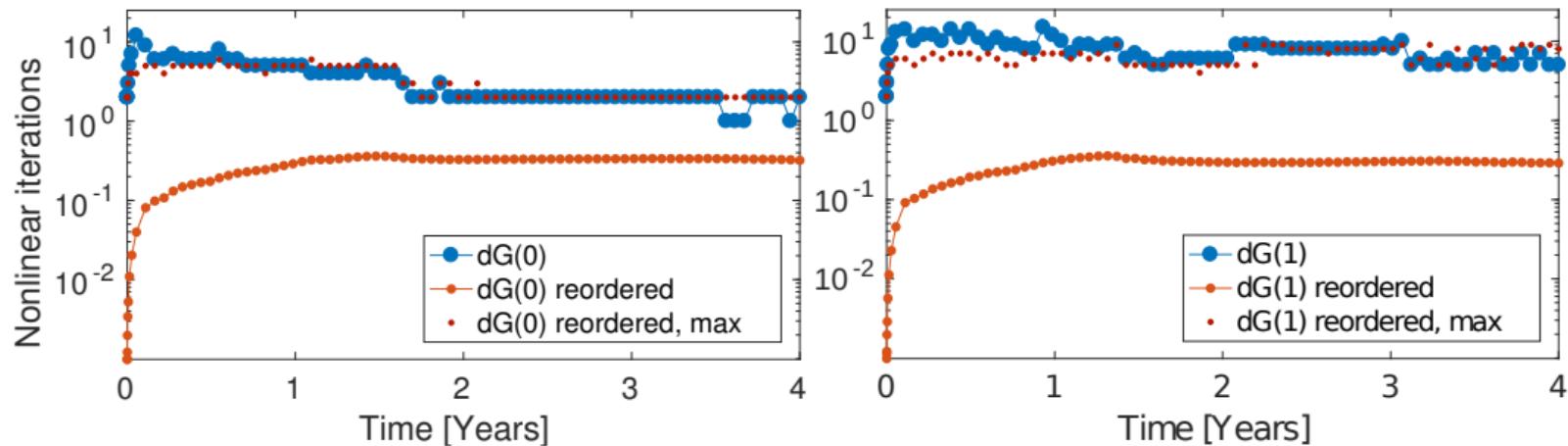
Nonlinear transport iterations per cell



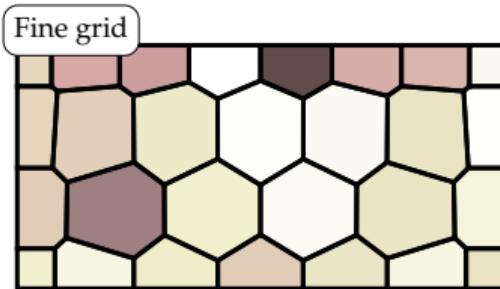
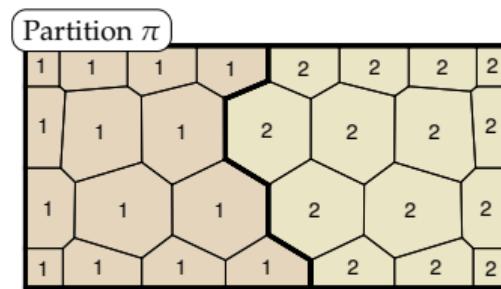
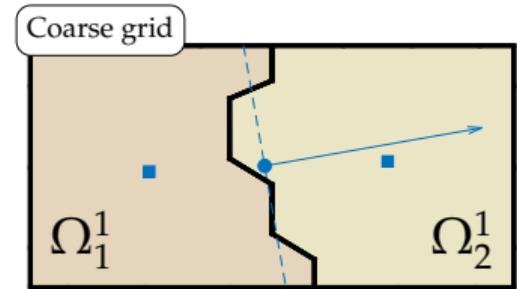
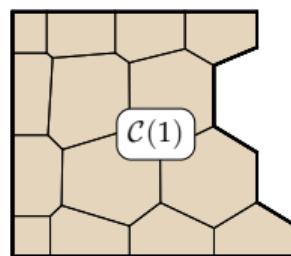
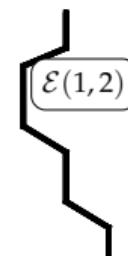
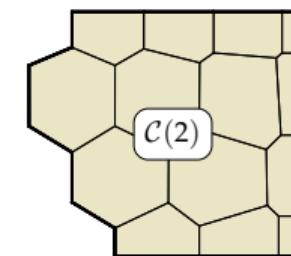
Paper VII–IX: Localized Reordered Nonlinear Transport Solvers



Nonlinear transport iterations

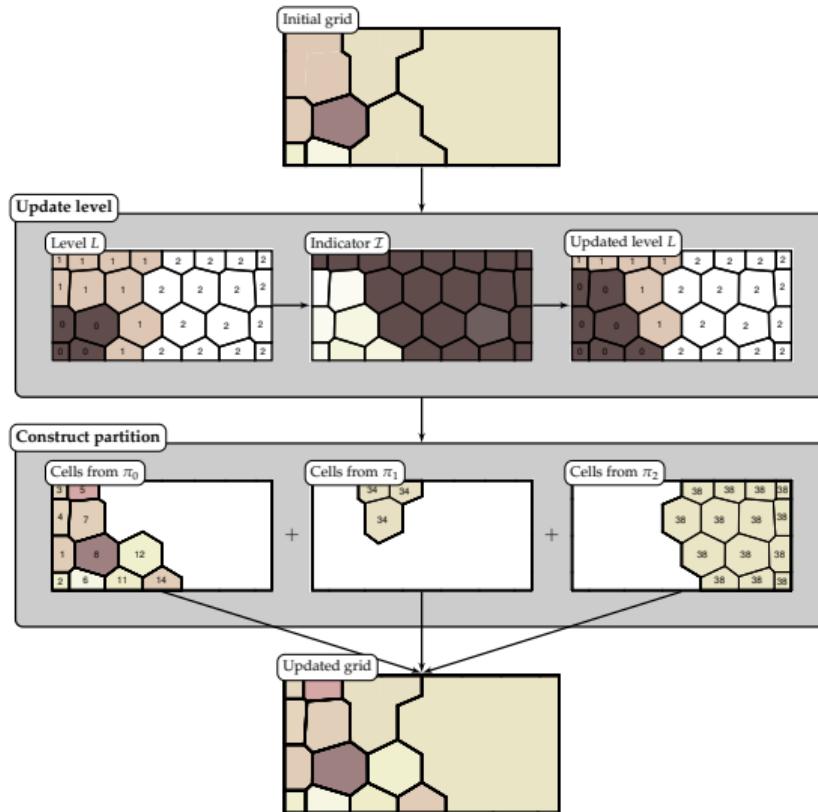


Paper XI: Dynamic Coarsening



- Dynamic grid refinement challenging for complex geomodels
- Construct coarse grids by partitioning (rectilinear, METIS, non-uniform coarsening, etc.)
 - Coarse grid block = aggregate of fine cells [Karypis and Kumar, 1998, Hauge et al., 2012]

Paper XI: Dynamic Coarsening



- Mapping should be mass conservative

$$|\Omega_i^a| \mathcal{M}_{\alpha,i}^a(u^a) = \sum_{j \in \mathcal{C}_a(i)} |\Omega_j| \mathcal{M}_{\alpha,j}(u) \quad (1)$$

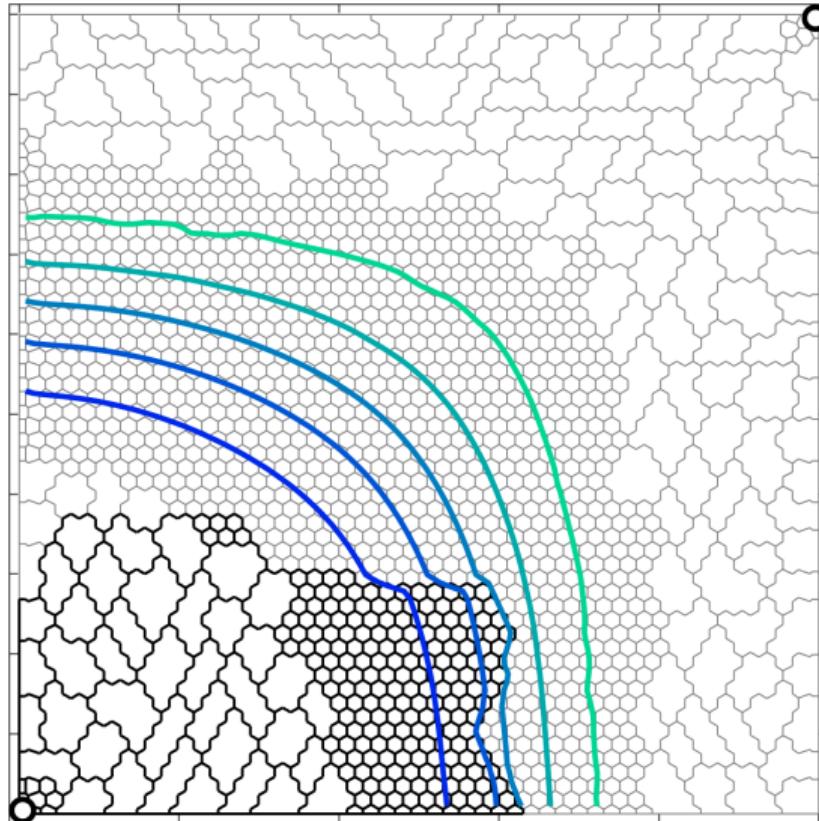
- Pressure and total intercell fluxes

$$p_{\alpha,i}^a = \underbrace{\frac{1}{\phi_i^a |\Omega_i^a|} \sum_{j \in \mathcal{C}_a(i)} \phi_j |\Omega_j| p_{\alpha,j}}_{\text{pore-volume-weighted}}, \quad v_{ij}^a = \underbrace{\sum_{(m,n) \in \mathcal{E}_a(i,j)} v_{mn}}_{\text{sum fine-scale fluxes}}$$

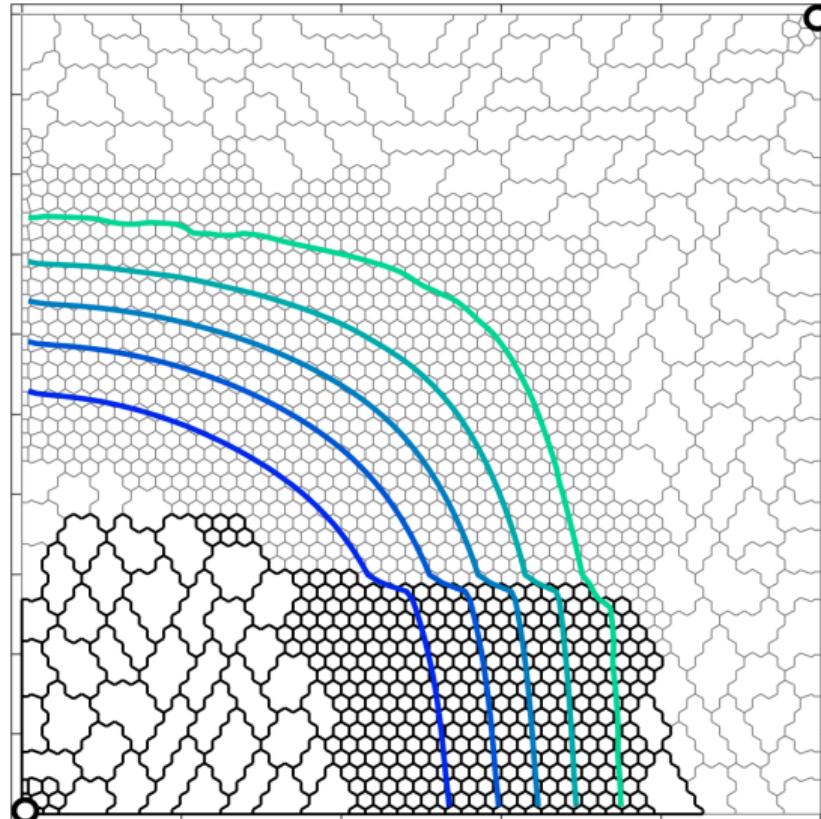
- Immiscible: Saturations found by solving (1)
- After transport: map saturations to fine grid

$$S_{\alpha,j} = S_{\alpha,i}^a \quad \forall j \in \mathcal{C}(i),$$

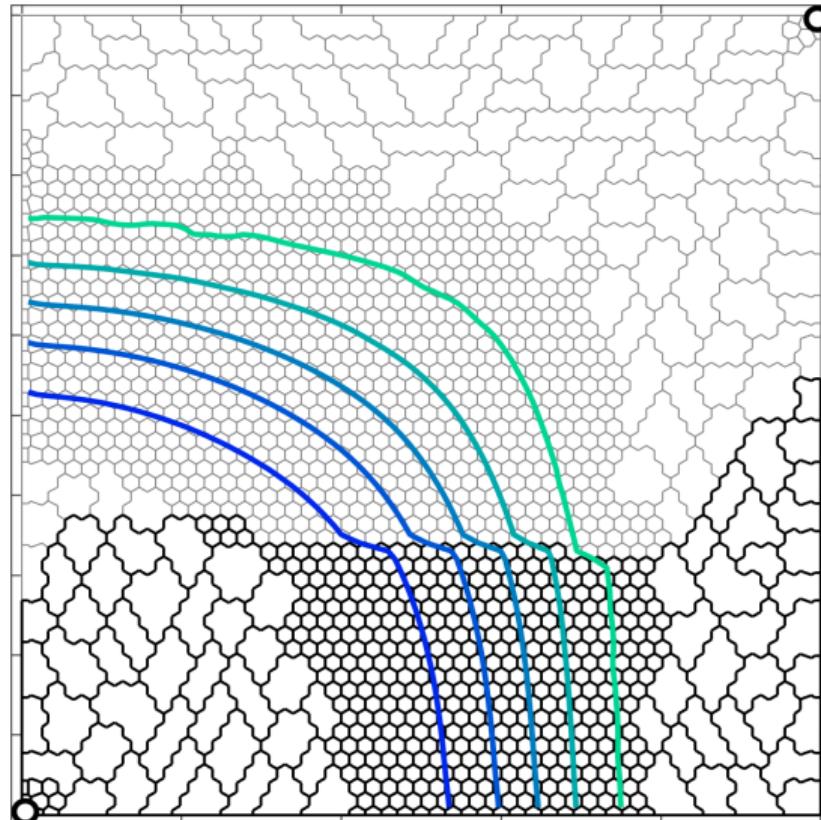
Paper XI: Dynamic Coarsening



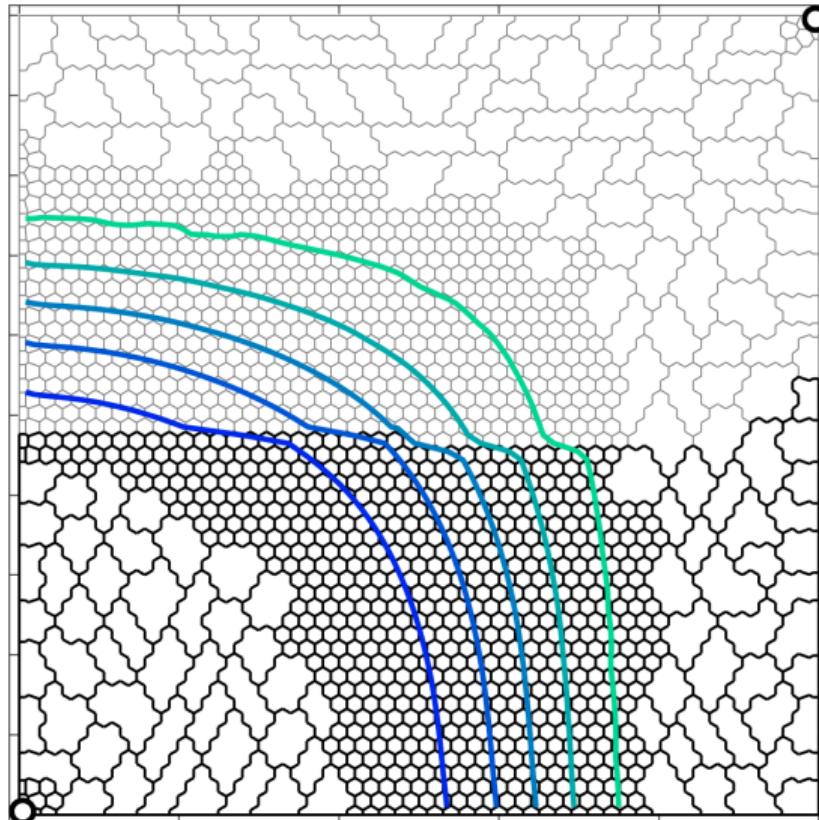
Paper XI: Dynamic Coarsening



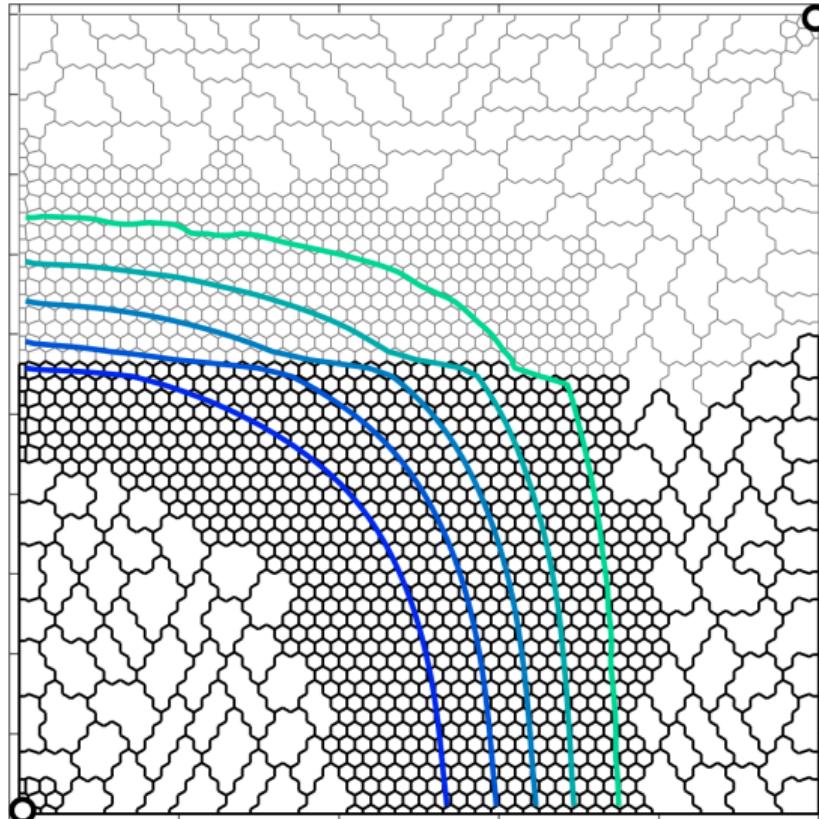
Paper XI: Dynamic Coarsening



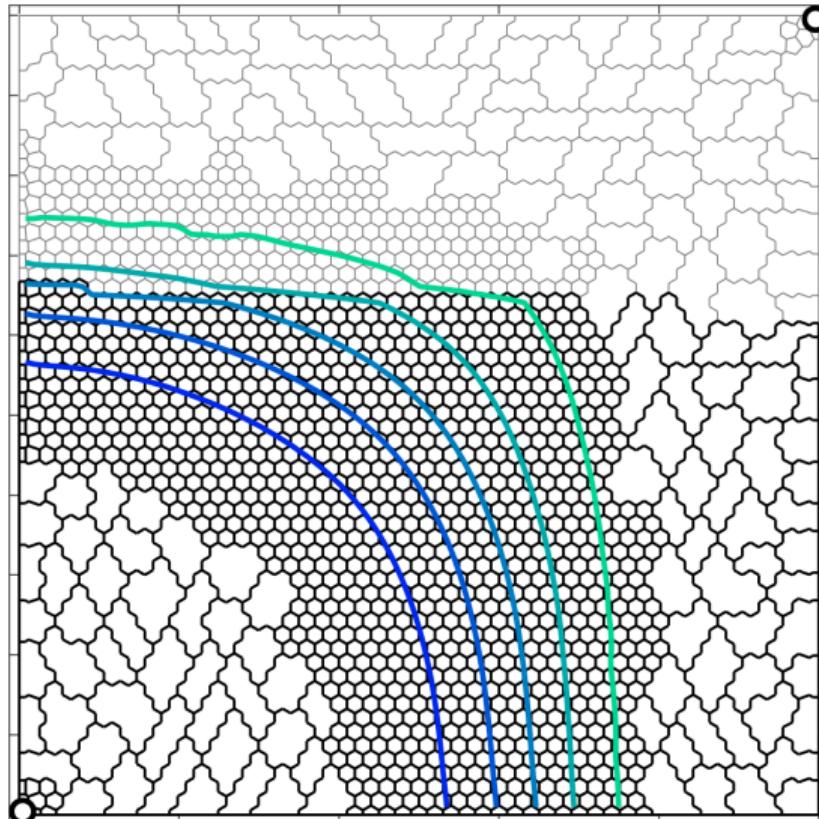
Paper XI: Dynamic Coarsening



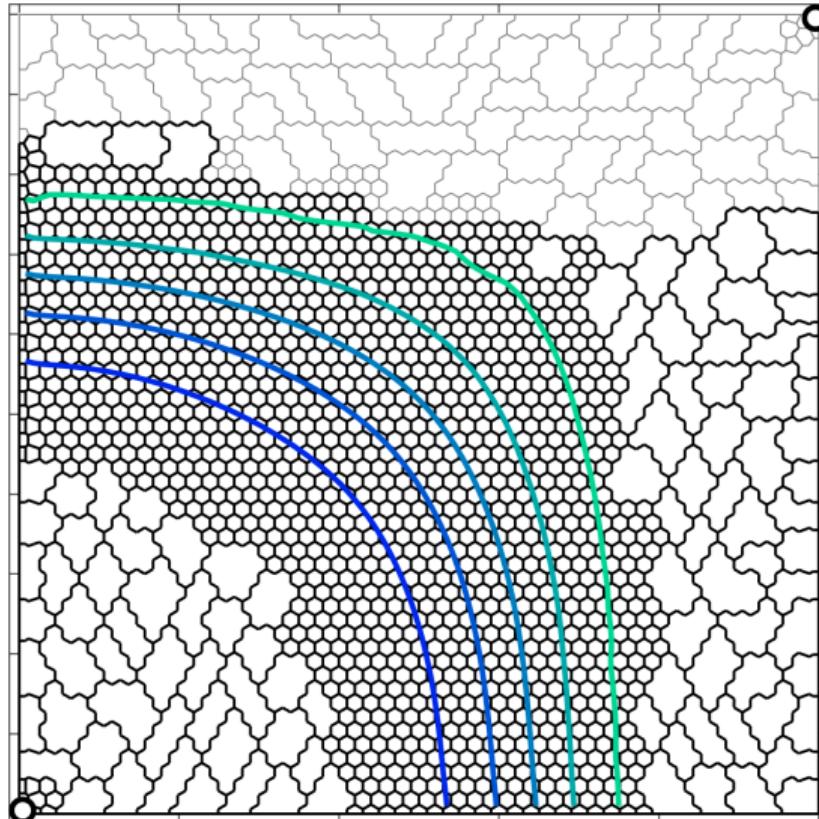
Paper XI: Dynamic Coarsening



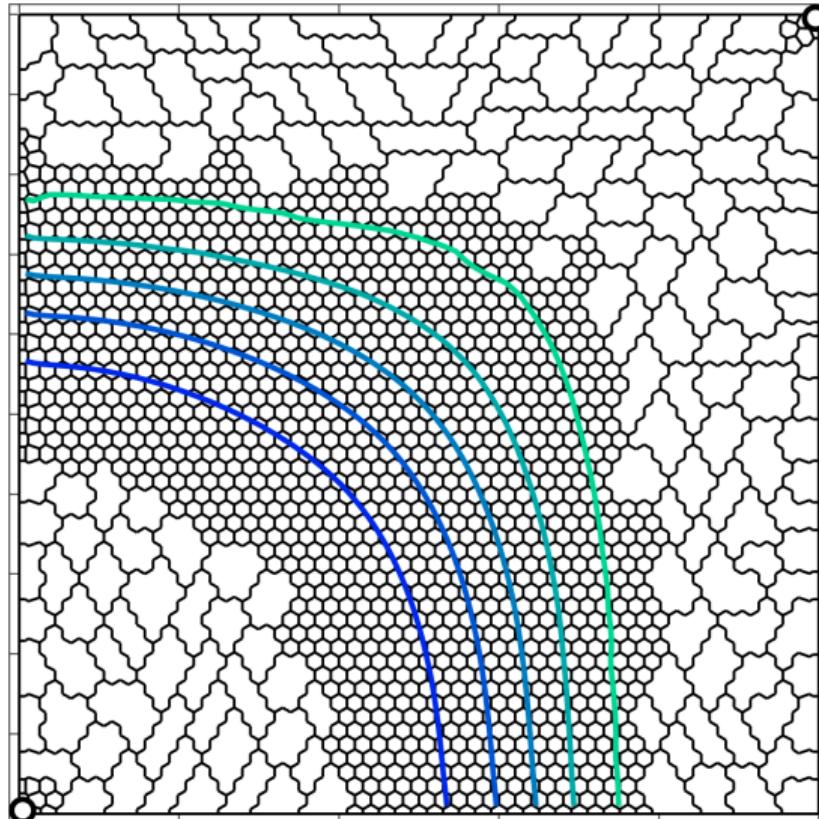
Paper XI: Dynamic Coarsening



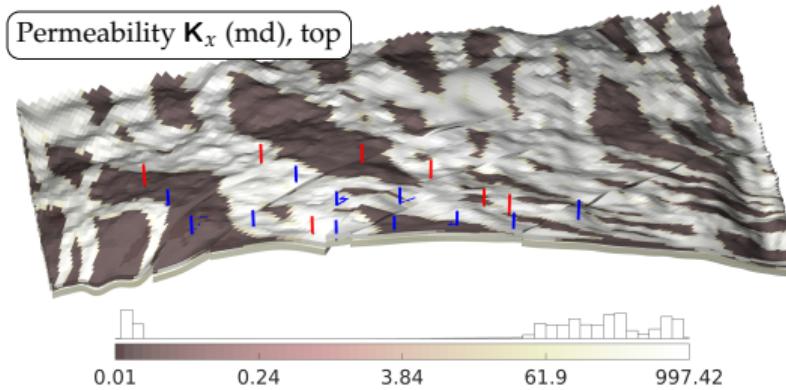
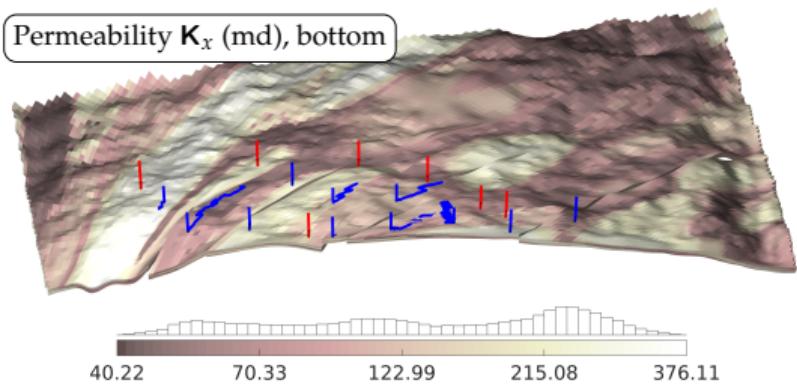
Paper XI: Dynamic Coarsening



Paper XI: Dynamic Coarsening



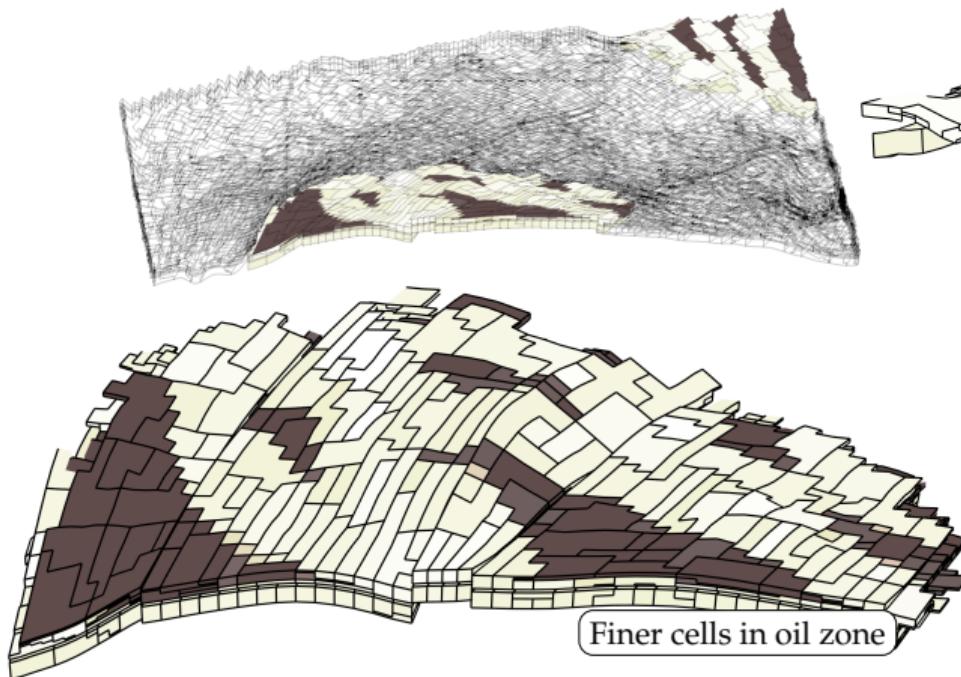
Paper XI: Dynamic Coarsening



Example: Olympus field model [Fonseca et al., 2018]

- Cornerpoint grid format with 197 750 active cells, modelled from North Sea oil field
- Permeability/porosity: 1000 md/0.35 in sandstone channels – 1 md/0.03 in shale layers
- Compressible oil-water model: density 850/1020 kg/m³, viscosity 2.59/0.395 cP

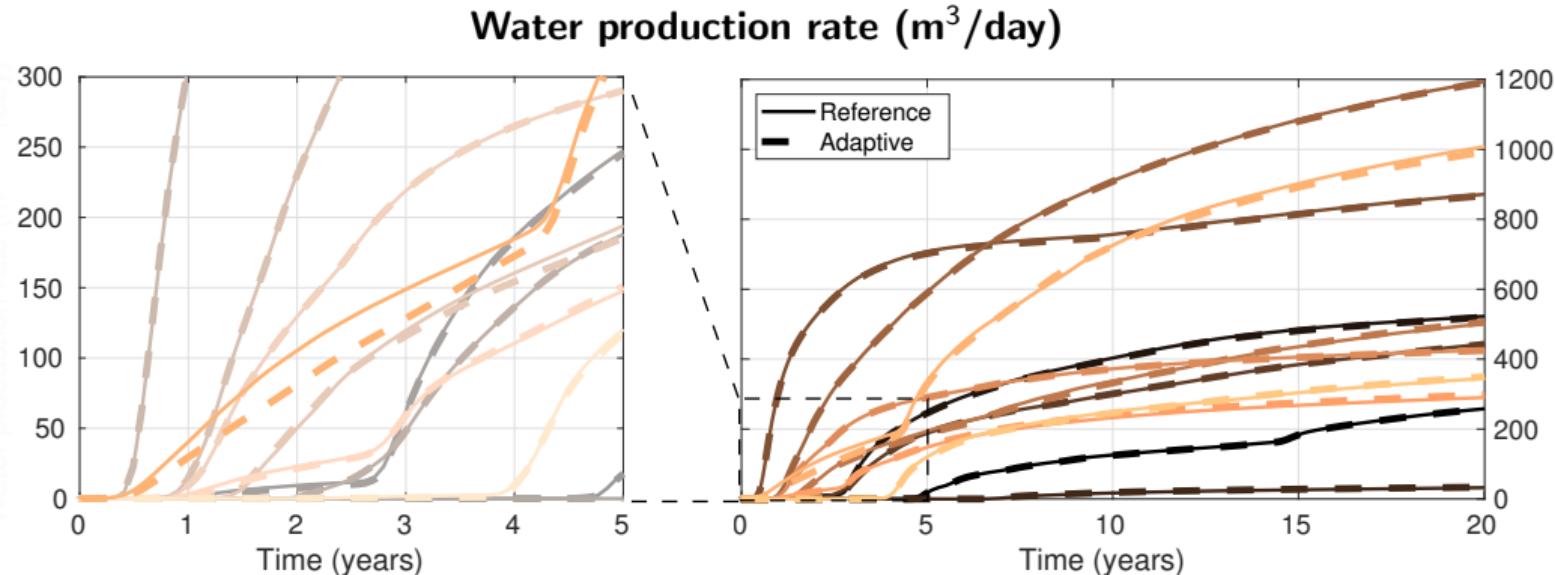
Paper XI: Dynamic Coarsening



Coarser cells away from oil zone

Finer cells in oil zone

Paper XI: Dynamic Coarsening

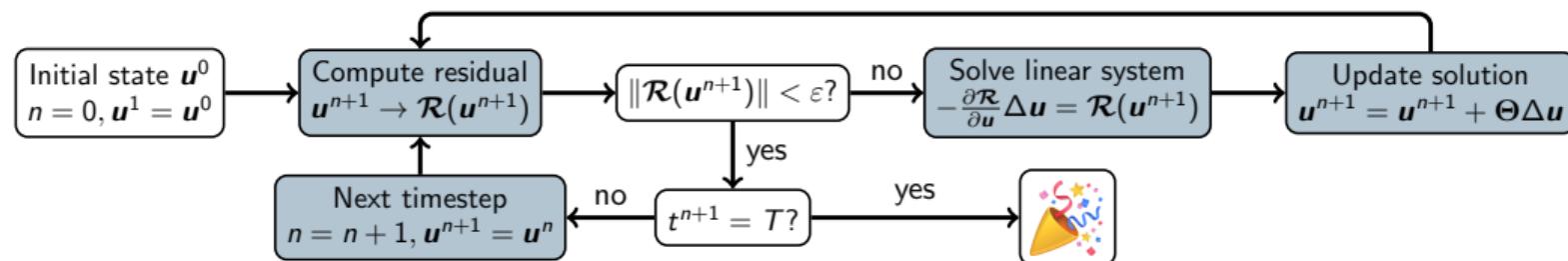


Very close match between reference and dynamic solution in all production wells

Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

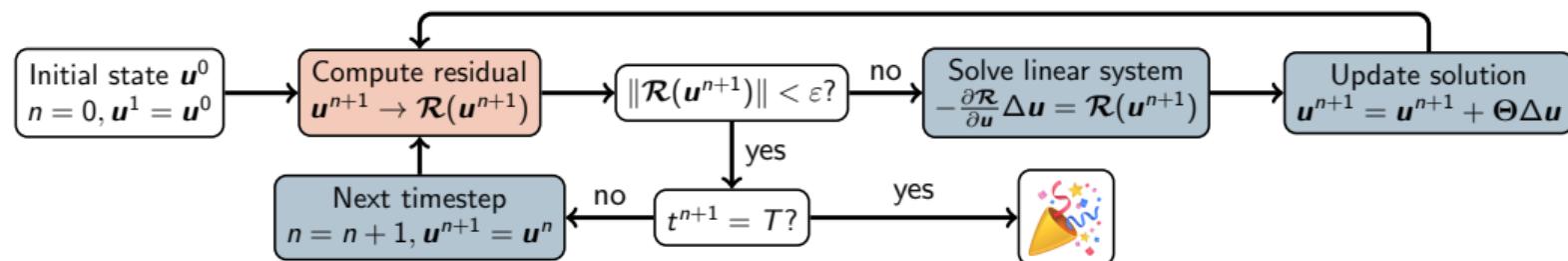
- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - Nonlinear transport solver with sophisticated adaptive trust-region damping
 - Localized nonlinear transport solvers based on reordering, with dynamic coarsening
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

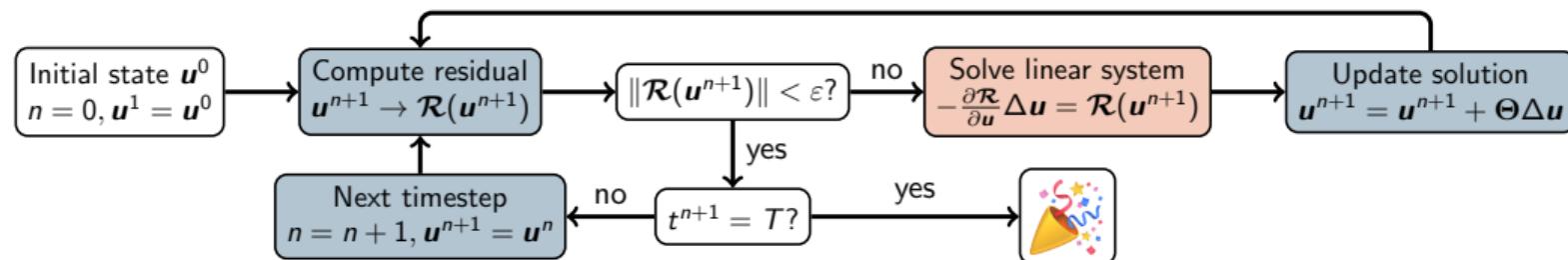
- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - Nonlinear transport solver with sophisticated adaptive trust-region damping
 - Localized nonlinear transport solvers based on reordering, with dynamic coarsening
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

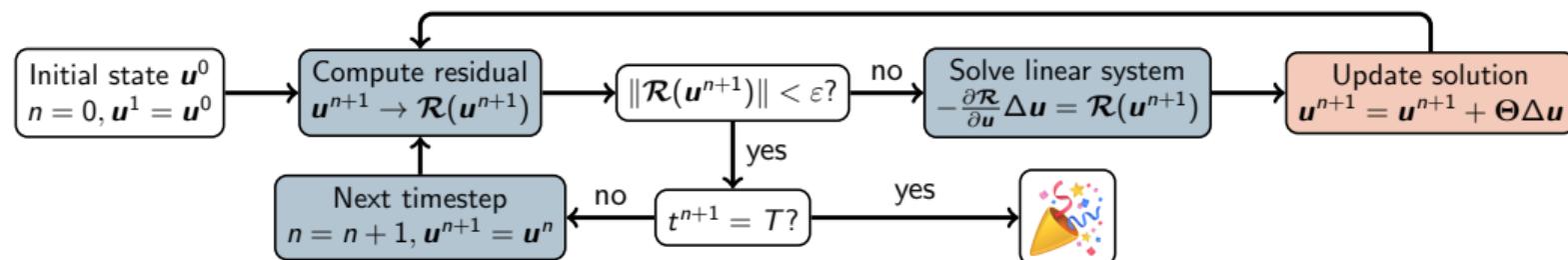
- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - Nonlinear transport solver with sophisticated adaptive trust-region damping
 - Localized nonlinear transport solvers based on reordering, with dynamic coarsening
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

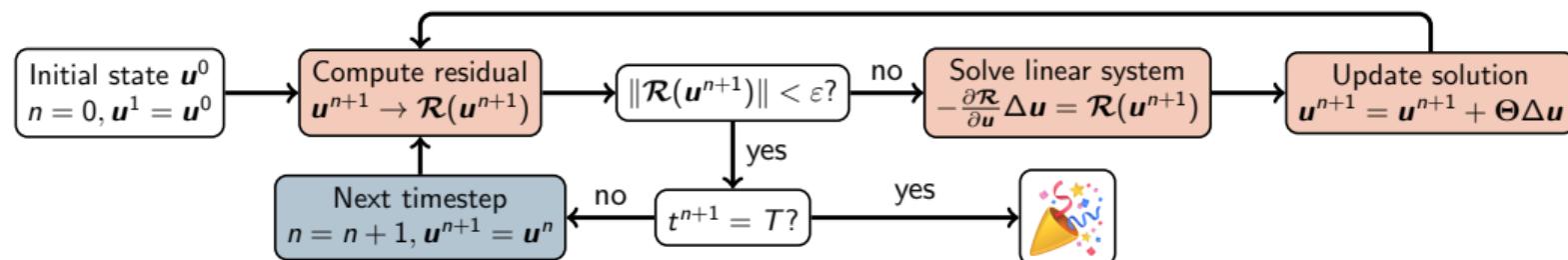
- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - **Nonlinear transport solver with sophisticated adaptive trust-region damping**
 - Localized nonlinear transport solvers based on reordering, with dynamic coarsening
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - Nonlinear transport solver with sophisticated adaptive trust-region damping
 - **Localized nonlinear transport solvers based on reordering, with dynamic coarsening**
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)



Concluding Remarks

Goal: Develop accurate and efficient discretizations and solution strategies for reservoir simulation by exploiting physical and mathematical structures of the underlying problem

- Has been achieved by working with a variety of topics
 - Unstructured gridding algorithms and consistent discretizations for complex reservoirs
 - Efficient iterative linear solver with elliptic multiscale preconditioning
 - Nonlinear transport solver with sophisticated adaptive trust-region damping
 - Localized nonlinear transport solvers based on reordering, with dynamic coarsening
- Results published in nine scientific papers (4 journal, 3 conference, 2 in preparation)

Reproducible and transparent research

- Open-source software development (Matlab Reservoir Simulation Toolbox, www.mrst.no)
- Methods tested on challenging and realistic problems, with variety of parameters
 - Reported cases when methods do *not* work well

Acknowledgements

Thanks to my supervisors

Knut-Andreas Lie, Olav Møyner, Xavier Raynaud, Helge Holden;

To my colleagues

in the Computational Geosciences Group at SINTEF;

... and to my family and friends for invaluable support and patience!

References

I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on non-orthogonal, curvilinear grids for multi-phase flow. In *ECMOR IV - 4th European Conference on the Mathematics of Oil Recovery*, 1994. doi: 10.3997/2214-4609.201411179.

L. Branets, S. S. Ghai, S. L. Lyons, and X.-H. Wu. Efficient and accurate reservoir modeling using adaptive gridding with global scale up. In *SPE Reservoir Simulation Symposium*, 2009. doi: 10.2118/118946-ms.

F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. *Math. Model Meth. Appl. Sci.*, 15(10):1533–1551, 2005. doi: 10.1142/S0218202505000832.

R. Fonseca, E. Della Rossa, A. Emerick, R. Hanea, and J. Jansen. Overview Of The Olympus Field Development Optimization Challenge. *ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery*, (September 2018), 2018. doi: 10.3997/2214-4609.201802246.

V. L. Hauge, K.-A. Lie, and J. R. Natvig. Flow-based coarsening for multiscale simulation of transport in porous media. *Comput. Geosci.*, 16(2):391–408, 2012. doi: 10.1007/s10596-011-9230-x.

P. Jenny, H. A. Tchelepi, and S. H. Lee. Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions. *J. Comput. Phys.*, 228(20):7497–7512, 2009. doi: 10.1016/j.jcp.2009.06.032.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. *SIAM J. Sci. Comput.*, 20(1):359–392, 1998. doi: 10.1137/S1064827595287997.

C. Le Potier. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. *Int. J. Finite Vol.*, 6(2):1–20, 2009.

K.-A. Lie, H. M. Nilsen, A. F. Rasmussen, and X. Raynaud. Fast simulation of polymer injection in heavy-oil reservoirs on the basis of topological sorting and sequential splitting. *SPE J.*, 19(06):0991–1004, 2014. doi: 10.2118/163599-PA.

S. Manzoor, M. G. Edwards, A. H. Dogru, and T. M. Al-Shaalan. Interior boundary-aligned unstructured grid generation and cell-centered versus vertex-centered CVD-MPFA performance. *Comput. Geosci.*, 22(1):195–230, 2018. doi: 10.1007/s10596-017-9686-4.

O. Møyner. Nonlinear solver for three-phase transport problems based on approximate trust regions. *Comput. Geosci.*, 21(5-6):999–1021, 7 2017. doi: 10.1007/s10596-017-9660-1.

J. R. Natvig and K.-A. Lie. Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements. *J. Comput. Phys.*, 227(24):10108–10124, 2008. doi: 10.1016/j.jcp.2008.08.024.

S. M. Toor, M. G. Edwards, A. Dogru, and T. Shaalan. Boundary aligned grid generation in three dimensions and CVD-MPFA discretization. In *SPE Reservoir Simulation Symposium*, 2015. doi: 10.2118/173313-ms.

J. Wallis, R. Kendall, and T. Little. Constrained residual acceleration of conjugate residual methods. In *SPE Reservoir Simulation Symposium*, 1985. doi: 10.2118/13536-MS.