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Introdution

� Many problems are in principle deterministic, but we don’t know the parameters

• From computational finance to plasma physics
• ... and reservoir simulation, where subsurface properties are uncertain

� Need a method to quantify uncertainty

• Method of moments, collocation methods, stochastic Galerkin
• Uncertainty with high dimension and highly nonlinear effect
→ Monte Carlo methods
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Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑

i=1

ui ,

V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

EMC(u) =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy EMC < ε requires N = O(ε−2) samples!

3 / 28



Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑

i=1

ui ,

V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

EMC(u) =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy EMC < ε requires N = O(ε−2) samples!

3 / 28



Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑

i=1

ui , V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

EMC(u) =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy EMC < ε requires N = O(ε−2) samples!

3 / 28



Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑

i=1

ui , V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

EMC(u) =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy EMC < ε requires N = O(ε−2) samples!

3 / 28



Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑

i=1

ui , V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

EMC(u) =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy EMC < ε requires N = O(ε−2) samples!

3 / 28



Two-Level Monte Carlo Method

� Premise: we can obtain inexpensive approximation u0 of u1 = u

� Express expected value as

E[u1] = E[u0] + E[u1 − u0]

� ... with unbiased estimator

E[u1] ≈ E (u1) =
1

N0

N0∑

i=1

ui0 +
1

N1

N1∑

i=1

(ui1 − ui0)

• Quantities ui1 and ui0 come from the same random sample i
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Two-Level Monte Carlo Method

� Total cost C (e.g., CPU time) and total variance V :

C = N0C0 + N1C1, V =
V0

N0
+

V1

N1

C0 Cost of computing single sample of u0 V0 Variance V[u0]
C1 Cost of computing single sample of u1 − u0 V1 Variance V[u1 − u0]

� Minimize total cost C for a fixed variance ε2 (see blackboard)

min N0C0+N1C1 s.t.
V0

N0
+
V1

N1
= ε2

→ N` = ε−2
(√

V0C0 +
√

V1C1

)√V`
C`
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Multilevel Monte Carlo Method

� Premise: we can obtain less expensive approximation u`−1 of u` for u0, . . . , uL = u

� Express expected value as telescopic sum (with u−1 ≡ 0)

E[uL] =
L∑

`=0

E[u` − u`−1]

� ... with unbiased estimator

E[uL] ≈ E (uL) =
L∑

`=0

(
1

N`

N∑̀

i=1

(
u

(`,i)
` − u

(`,i)
`−1

))

• Quantities u
(`,i)
` and u

(`,i)
`−1 from the same random sample i , different for each `
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Multilevel Monte Carlo Method

� Generally, u` is obtained by simulation, so that uL is approximation of u

� Mean square error is now

� Sampling error < ε2/2 and approximation error < ε2/2 ensures EML(uL) < ε

� Simplify notation: let E` be MC estimator of u` − u`−1

E` =
1

N`

N∑̀

i=1

(
u

(`,i)
` − u

(`,i)
`−1

)
, E (uL) =

L∑

`=0

E`
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Multilevel Monte Carlo Method

Theorem

If there exists independent estimators E` based on N` MC samples, with expected cost C` and
variance V`, and α, β, γ, c1, c2, c3 > 0 such that α ≥ min(β, γ)/2, and

1. |E[u` − u]| ≤ c12−α` (Increase in accuracy)
2. V` ≤ c22−β` (Decrease in variance)
3. C` ≤ c32γ` (Increase in cost)

Then, there exists c4 > 0 such that for ε < e−1, there are L, N` for which the estimator
E (uL) =

∑
` E` has EML(uL) < ε, and

E[C ] ≤





c4ε
−2 β > γ

c4ε
−2 log(ε)2 β = γ

c4ε
−2−(γ−β)/α β < γ
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MLMC for Uncertainty Quantification in Reservoir Simulation

� Incompressible flow in porous media

– SPDE

~v(x) = −K (x)∇p(x), ∇ · ~v(x) = q(x)

� Permeability K is uncertain

| Few physical samples, uncertain seismic data

� Modelled as random field K (x , ω)

| Spatial and stochastic variable (x , ω) ∈ D × Ω

� Fixing ω gives a deterministic PDE

K

10 / 28
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MLMC for Uncertainty Quantification in Reservoir Simulation

Two-phase flow in porous media

∂t(φSα) +∇ · ~vα = qα, ~vα = −λαK∇p, α = w , o

φ: porosity Sα: saturation ~vα: Darcy velocity qα: sources/sinks λα: mobility

� Quantity of interest u typically derived from simulation results
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∂t(φSα) +∇ · ~vα = qα, ~vα = −λαK∇p, α = w , o

φ: porosity Sα: saturation ~vα: Darcy velocity qα: sources/sinks λα: mobility

� Quantity of interest u typically derived from simulation results
... which are all random variables

· · ·K1 K2 K3 K4 K5 K6 K7 K8
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MLMC for Uncertainty Quantification in Reservoir Simulation

� Quantity of interest u generally not scalar, but defined over domain Λ

Saturation at time t ′ u = Sw (x , t ′) Λ = D (physical domain)
Water production rate u = qw (t) Λ = [0,T ] (time domain)
Total oil production u = Qo Λ not applicable

� Necessary substitutions with appropriate norm ‖ · ‖ over Λ

|E[u`]− E[u]| → ‖E[u`]− E[u]‖, V[u` − u`−1]→ E
[
‖u` − u`−1 − E[u` − u`−1]‖2

]

� Theory for scalar variables follows directly – particularly with L2(Λ)-norm:

V
[
E (uL)

]
=

L∑

`=0

V`
N`
, where V` = E

[
‖u` − u`−1 − E[u` − u`−1]‖2

]

12 / 28
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MLMC for Uncertainty Quantification in Reservoir Simulation

Algorithm: Multilevel Monte Carlo Method

Input: Hierarchy of approximations ` = 0, . . . , L, tolerance ε
for ` = 0, . . . , L do // Warmup

Compute Nw samples of u` − u`−1; // Local MC

end
Estimate V`, C` and optimal N` = Nw + N ′` given desired tolerance ε
while any extra samples needed, (N ′` > 0) do // Multilevel MC

for ` = 0, . . . , L do
Compute N ′` more samples of u` − u`−1; // Local MC

end
Update estimates V`, C` and optimal N` = N` + N ′` given desired accuracy ε

end
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for ` = 0, . . . , L do
Compute N ′` more samples of u` − u`−1; // Local MC

end
Update estimates V`, C` and optimal N` = N` + N ′` given desired accuracy ε

end
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Two Illustrating Examples

Problem

� The hello world of reservoir simulation:

• Quarter five-spot problem with water injection in oil-filled reservoir

� Incompressible flow, linear relative permeabilities, equal viscosities

� Assume logK is Gaussian with given covariance function → 1000 realizations

Strategy

1. Run MC simulation with 100 samples, compute RMSE EMC

2. For layer 0 . . . , L, run 10 warmup samples to estimate C` and V`

3. Compute N` for desired tolerance ε ≈ EMC, run and compare with MC

14 / 28
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Example 1: Smooth Permeability

· · ·

Covariance function

C (x , x ′) = σ2 exp

(
−‖x − x ′‖2

λ

)

covariance σ2 = 1
correlation length λ = 0.3
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Example 1: Smooth Permeability

Water production rate (m3/day)

0 41 81 122 162 203 243 284 324 365

Time (days)

0
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200

250

300

� Monte Carlo simulation with 100 samples: EMC(qw ) = 1.0× 10−2
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Example 1: Smooth Permeability

� Five levels with ∼ 42, 82, 162, 322, 642 cells + refinement around wells

� Warmup: Run 10 samples on each level to estimate V` and C`
→ used to find optimal N` for tolerance ε ≈ EMC

min
L∑

`=0

N`C` s.t.
L∑

`=0

V`
N`

= ε2 → N` = ε−2

(
L∑

k=0

√
VkCk

)√
V`
C`
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Example 1: Smooth Permeability

N4 = 3 N3 = 6 N2 = 14 N1 = 24 N0 = 198

� Five levels with ∼ 42, 82, 162, 322, 642 cells + refinement around wells

� Warmup: Run 10 samples on each level to estimate V` and C`
→ used to find optimal N` for tolerance ε ≈ EMC
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L∑

`=0

N`C` s.t.
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Example 1: Smooth Permeability

Water production rate (m3/day)

0 41 81 122 162 203 243 284 324 365

Time (days)

0

50

100

150

200

250

300

MC

Multilevel MC

� Multilevel Monte Carlo simulation: EML(qw ) = 1.5× 10−2
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Example 1: Smooth Permeability
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� Total cost of Multilevel Monte Carlo:
∑

`N`C` ≈ 488 s

� Total cost of Monte Carlo (assuming C4 = cost of u4 − u3 ≈ cost of u4) ≈ 923 s
→ Similar accuracy with about half the cost
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Example 2: High-Contrast Permeability

· · ·

Covariance function

C (x , x ′) = σ2 exp

(
−‖x − x ′‖

λ

)

covariance σ2 = 1
correlation length λ = 0.3
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Example 2: High-Contrast Permeability

Water production rate (m3/day)

0 41 81 122 162 203 243 284 324 365
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� Monte Carlo simulation with 100 samples: EMC(qw ) = 2.1× 10−2
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Example 2: High-Contrast Permeability

� Five levels with ∼ 42, 82, 162, 322, 642 cells + refinement around wells

� Warmup: Run 10 samples on each level to estimate V` and C`
→ used to find optimal N` for tolerance ε ≈ EMC
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Example 2: High-Contrast Permeability

N4 = 12 N3 = 32 N2 = 74 N1 = 102 N0 = 722

� Five levels with ∼ 42, 82, 162, 322, 642 cells + refinement around wells

� Warmup: Run 10 samples on each level to estimate V` and C`
→ used to find optimal N` for tolerance ε ≈ EMC

min
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Example 2: High-Contrast Permeability

Water production rate (m3/day)

0 41 81 122 162 203 243 284 324 365

Time (days)

0
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300

MC

Multilevel MC

� Multilevel Monte Carlo simulation: EML(qw ) = 1.2× 10−2
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Example 2: High-Contrast Permeability
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� Total cost of Multilevel Monte Carlo:
∑

`N`C` ≈ 1686 s

� Total cost of Monte Carlo (assuming C4 = cost of u4 − u3 ≈ cost of u4) ≈ 909 s
→ Similar variance with almost twice the cost
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Concluding Remarks

A few pitfalls and shortcomings

� Convergence theory with conditions in terms of unknown quantities

• Number of samples needed to approximate V`, C` is problem-dependent

� Use upscaling with care

• Coarsest level ` = 0 should have cell diameter h ∼ correlation length λ

� Very challenging to upscale complex models in a meaningful way

• Channelized reservoirs, different rock types, multiphase, etc.
... and the best methods are expensive

� Not all choices of u are appropriate!

• Rule of thumb: average of u should ”make sense” for the problem at hand

25 / 28



Concluding Remarks

A few pitfalls and shortcomings

� Convergence theory with conditions in terms of unknown quantities

• Number of samples needed to approximate V`, C` is problem-dependent

� Use upscaling with care

• Coarsest level ` = 0 should have cell diameter h ∼ correlation length λ

� Very challenging to upscale complex models in a meaningful way

• Channelized reservoirs, different rock types, multiphase, etc.
... and the best methods are expensive

� Not all choices of u are appropriate!

• Rule of thumb: average of u should ”make sense” for the problem at hand

25 / 28



Concluding Remarks

A few pitfalls and shortcomings

� Convergence theory with conditions in terms of unknown quantities

• Number of samples needed to approximate V`, C` is problem-dependent

� Use upscaling with care

• Coarsest level ` = 0 should have cell diameter h ∼ correlation length λ

� Very challenging to upscale complex models in a meaningful way

• Channelized reservoirs, different rock types, multiphase, etc.
... and the best methods are expensive

� Not all choices of u are appropriate!

• Rule of thumb: average of u should ”make sense” for the problem at hand

25 / 28



Concluding Remarks

A few pitfalls and shortcomings

� Convergence theory with conditions in terms of unknown quantities

• Number of samples needed to approximate V`, C` is problem-dependent

� Use upscaling with care

• Coarsest level ` = 0 should have cell diameter h ∼ correlation length λ

� Very challenging to upscale complex models in a meaningful way

• Channelized reservoirs, different rock types, multiphase, etc.
... and the best methods are expensive

� Not all choices of u are appropriate!

• Rule of thumb: average of u should ”make sense” for the problem at hand

25 / 28



Concluding Remarks

A few pitfalls and shortcomings

� Convergence theory with conditions in terms of unknown quantities

• Number of samples needed to approximate V`, C` is problem-dependent

� Use upscaling with care

• Coarsest level ` = 0 should have cell diameter h ∼ correlation length λ

� Very challenging to upscale complex models in a meaningful way

• Channelized reservoirs, different rock types, multiphase, etc.
... and the best methods are expensive

� Not all choices of u are appropriate!

• Rule of thumb: average of u should ”make sense” for the problem at hand

25 / 28



Concluding Remarks

Can we do better?

� Level does not necessarily mean spatial resolution!

• Solver-based: use a more accurate solver for higher levels
e.g., increasing accuracy of spatial/temporal discretization with level
• Multiscale methods (compromise between upscaling and solver accuracy)

� MLMC does not require a geometric sequence of levels

• Sufficient that accuracy and cost increase and variance decrease with `

� Multi-index Monte Carlo – change multiple aspects of simulation with level

• Example: resolution in space and time, `→ ` = (`x , `t)
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Developed by nuclear physicist Stanislaw Ulam during the Manhattan Project in the late 1940’s

It was at that time that I suggested an obvious name for the statistical method – a suggestion
not unrelated to the fact that Stan had an uncle who would borrow money from relatives
because he ”just had to go to Monte Carlo”

— Nicholas Metropolis, The Beginning of the Monte Carlo Method (1987)
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