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Introdution

m Many problems are in principle deterministic, but we don't know the parameters

e From computational finance to plasma physics
e ... and reservoir simulation, where subsurface properties are uncertain
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Introdution

m Many problems are in principle deterministic, but we don't know the parameters
e From computational finance to plasma physics
e ... and reservoir simulation, where subsurface properties are uncertain

m Need a method to quantify uncertainty

e Method of moments, collocation methods, stochastic Galerkin
e Uncertainty with high dimension and highly nonlinear effect
— Monte Carlo methods
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m Let u be random variable with expected value E[u] and variance V[u]
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Monte Carlo Method

m Let u be random variable with expected value E[u] and variance V[u]

m Approximate E[u] from independent, identically distributed samples u*,. .., uN
1. 1
Elu] ~ E(u) = 5 > v’ V[E(w)] = E |(E(s) ~ E[E(u)])?] = £ VId]

m Upsides: Easy to implement and easy to parallelize

m Downside: Root mean square error (RMSE) of the estimator is
EMC(u) = \/V[E(u)] = O(N7V/?)
— Accuracy EMC < ¢ requires N = O(c72) samples!
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4/28



Two-Level Monte Carlo Method

m Premise: we can obtain inexpensive approximation ug of uy = u

m Express expected value as

E[Ul] = E[Uo] + E[ul — Uo]

4/28



Two-Level Monte Carlo Method

m Premise: we can obtain inexpensive approximation ug of uy = u

m Express expected value as
E[Ul] = E[Uo] + E[ul — Uo]

®m ... with unbiased estimator

1 i i i
E[u] ~ E(u1) = No E up + Ny E (u1 — up)
— ;
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Two-Level Monte Carlo Method

m Premise: we can obtain inexpensive approximation ug of uy = u

m Express expected value as
E[Ul] = E[Uo] + E[ul — Uo]

®m ... with unbiased estimator

Elu] ~ E ZUo+ Z 1 — tp)

e Quantities ) and v come from the same random sample /
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Two-Level Monte Carlo Method

m Total cost C (e.g., CPU time) and total variance V:

Vo Wi
C=NyGCo+ N, C V=—+——=-
0Co + N1Cy, No + m
Co | Cost of computing single sample of ug Vo | Variance V]ug]
C; | Cost of computing single sample of u; — ug Vi | Variance V[u; — up]

5/28



Two-Level Monte Carlo Method

m Total cost C (e.g., CPU time) and total variance V:

Vo Wi
C=NyGCo+ N, C V=—+——=-
0Co + N1Cy, No + m
Co | Cost of computing single sample of ug Vo | Variance V]ug]
C; | Cost of computing single sample of u; — ug Vi | Variance V[u; — up]

= Minimize total cost C for a fixed variance €2 (see blackboard)

Vo V;
min NgGo+N1 G s.t. ﬁz—i-ﬁi =¢?
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Two-Level Monte Carlo Method

m Total cost C (e.g., CPU time) and total variance V:

Vo Wi
C=NyGCo+ N, C V=—+——=-
0Co + N1Cy, No + m
Co | Cost of computing single sample of ug Vo | Variance V]ug]
C; | Cost of computing single sample of u; — ug Vi | Variance V[u; — up]

= Minimize total cost C for a fixed variance €2 (see blackboard)

Vo V; V,
min NgGo+N1 G s.t. 704_71 =¢? — Ny = g2 (\/V()Co + \/V1C1) 2t
Ab Aﬁ Ci
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Multilevel Monte Carlo Method

m Premise: we can obtain less expensive approximation uy_1 of up for ug,...,u = u
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Elu] = Z]E[u@ — up—1]
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Multilevel Monte Carlo Method

m Premise: we can obtain less expensive approximation uy_1 of up for ug,...,u = u

m Express expected value as telescopic sum (with u_; = 0)

L
Elu] = ZE[U@ — up—1]

=0

m ... with unbiased estimator

e Quantities u((,“) and u((é"l) from the same random sample /, different for each ¢
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Multilevel Monte Carlo Method

m Total cost C (e.g., CPU time) and total variance V:

L L Vv
C=Y NG, vzzﬁf
=0 =0 ¢

Cy | Cost of computing single sample of uy — up_1 V, | Variance V{up — up_1]
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Multilevel Monte Carlo Method

m Total cost C (e.g., CPU time) and total variance V:

L Loy
v
c-yma, v-y X
(=0 =0
Cy | Cost of computing single sample of uy — up_1 V, | Variance V{up — up_1]

m Minimize total cost C for a fixed variance 2

L L L
min Z NyCp  s.t. Z /\\/Ii =2 = Ny = g2 (Z Vi Vka> Ve
=0 =0
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Multilevel Monte Carlo Method

m Generally, uy is obtained by simulation, so that u; is approximation of u
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Multilevel Monte Carlo Method

m Generally, uy is obtained by simulation, so that u; is approximation of u

m Mean square error is now
M (u)? = E |(E(u) — B[u])?]

—E [(E(UL) —E [E(u)] + E [E(u)] — E[u])®
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Multilevel Monte Carlo Method

m Generally, uy is obtained by simulation, so that u; is approximation of u

m Mean square error is now
EM(u)? = E[(E(w) - Elul)?]
= E [(E(ur) ~ E[£(u)] + E[£(w)] ~ E[u])?]

= & [(E(ur) - BE@] + (BIE@)] - Blu])

[\

~~

Sampling error Approximation error
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Multilevel Monte Carlo Method

m Generally, uy is obtained by simulation, so that u; is approximation of u

m Mean square error is now

EMY(u)? = VIE(u)] + (E[E(u)] - E[u])?
———

Sampling error Approximation error

m Sampling error < £2/2 and approximation error < £2/2 ensures EM-(u;) < ¢
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Multilevel Monte Carlo Method

Generally, up is obtained by simulation, so that u; is approximation of u

m Mean square error is now

EMY(u)? = VIE(u)] + (E[E(u)] - E[u])?
———

Sampling error Approximation error

m Sampling error < £2/2 and approximation error < £2/2 ensures EM-(u;) < ¢
m Simplify notation: let E; be MC estimator of up — up_q
LM L
Z" e:’
e 3 (). e = A
i=1 =0
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Multilevel Monte Carlo Method

If there exists independent estimators E; based on Ny MC samples, with expected cost Cp, and
variance Vy, and «, 8,7, ¢1, ¢, ¢3 > 0 such that o > min(8,7)/2, and

1 |E[u — u]] < q27 (Increase in accuracy)
2. V< 2Pt (Decrease in variance)
3. G < g2t (Increase in cost)

Then, there exists c4 > 0 such that for e < e™*, there are L, N, for which the estimator
E(u) =Y, E has EM-(u,) < ¢, and

Eng—2 B>

E[C] < { ae™?log(e)*  B=1v
C45_2_('Y_B)/a ﬂ <7y
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MLMC for Uncertainty Quantification in Reservoir Simulation

m Incompressible flow in porous media

V(x) = —K(x)Vp(x), V- ¥(x) = q(x)
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MLMC for Uncertainty Quantification in Reservoir Simulation

m Incompressible flow in porous media — SPDE

-V (K(X7W)Vp(x,w')) = q(X,w)

m Permeability K is uncertain

| Few physical samples, uncertain seismic data
® Modelled as random field K(x,w)

| Spatial and stochastic variable (x,w) € D x Q
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MLMC for Uncertainty Quantification in Reservoir Simulation

Incompressible flow in porous media — SPDE

-V (K(X7W)Vp(x,w')) = q(X,w)

Permeability K is uncertain

| Few physical samples, uncertain seismic data
Modelled as random field K(x,w)

| Spatial and stochastic variable (x,w) € D x Q

Fixing w gives a deterministic PDE
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MLMC for Uncertainty Quantification in Reservoir Simulation

Two-phase flow in porous media
8t(¢5a) +V -V, = Ao, Vo = _AaKVpa o= Ww,o0

¢: porosity Sa: saturation V,: Darcy velocity Go: sources/sinks Ao: mobility

11/28



MLMC for Uncertainty Quantification in Reservoir Simulation

Two-phase flow in porous media
0t(0Sa) +V - Vo = Goy  Va = —AaKVp, a=w,o0
¢: porosity Sa: saturation V,: Darcy velocity Go: sources/sinks Ao: mobility
m Quantity of interest u typically derived from simulation results, e.g.
Saturation at time t' | u = S,(x,t)

Water production rate | u = q,(t)
Total oil production u=Q,
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MLMC for Uncertainty Quantification in Reservoir Simulation

Two-phase flow in porous media
8t(¢5a) +V -V, = Ao, Vo = _)\aKVpa o= Ww,o0

¢: porosity Sa: saturation V,: Darcy velocity Go: sources/sinks Ao: mobility

m Quantity of interest u typically derived from simulation results
. which are all random variables
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MLMC for Uncertainty Quantification in Reservoir Simulation

m Quantity of interest u generally not scalar, but defined over domain A
Saturation at time t' | u= S4(x,t") | A= D (physical domain)
Water production rate | u = g, (t) A =0, T] (time domain)
Total oil production u= Q, A not applicable
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MLMC for Uncertainty Quantification in Reservoir Simulation

m Quantity of interest u generally not scalar, but defined over domain A

Saturation at time t' | u= S4(x,t") | A= D (physical domain)
Water production rate | u = g, (t) A =0, T] (time domain)
Total oil production u= Q, A not applicable

m Necessary substitutions with appropriate norm || - || over A

|E[ur] = Elu]| = |[Elud] — E[u]ll, V{[ue — ug—1] = E [[lug — ue—1 — E[ug — up-1]|*]

m Theory for scalar variables follows directly — particularly with /?(A)-norm:

L
V[E(u)] = Z —, where V; =E [|lug — up—1 — Efup — Ug,1]||2]

~
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MLMC for Uncertainty Quantification in Reservoir Simulation

Algorithm: Multilevel Monte Carlo Method

Input: Hierarchy of approximations £ =0, ..., L, tolerance ¢
for /{=0,...,L do // Warmup
Compute N, samples of up — uy_q; // Local MC
end
Estimate V;, C; and optimal N; = N,, + N given desired tolerance ¢
while any extra samples needed, (N, > 0) do // Multilevel MC
for {=0,...,L do
‘ Compute Nj; more samples of up — up_1; // Local MC
end
Update estimates V;, C; and optimal Ny, = Ny + Né given desired accuracy e
end
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Two lllustrating Examples

Problem
m The hello world of reservoir simulation:

e Quarter five-spot problem with water injection in oil-filled reservoir
m Incompressible flow, linear relative permeabilities, equal viscosities

m Assume log K is Gaussian with given covariance function — 1000 realizations
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Two lllustrating Examples

Problem
m The hello world of reservoir simulation:

e Quarter five-spot problem with water injection in oil-filled reservoir
m Incompressible flow, linear relative permeabilities, equal viscosities

m Assume log K is Gaussian with given covariance function — 1000 realizations

Strategy
1. Run MC simulation with 100 samples, compute RMSE £M¢
2. For layer 0...,L, run 10 warmup samples to estimate C; and V;

gMC

3. Compute N, for desired tolerance ¢ ~ , run and compare with MC
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Example 1: Smooth Permeability

Covariance function

2
C(x,x") = o exp <_Hx}\xH)

covariance 02 =1
correlation length A = 0.3
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Example 1: Smooth Permeability

' . . N
Covariance function

2
C(x,x") = o exp <—HX)\XH>

covariance 02 =1
correlation length A = 0.3

et M e,

10e-14.5 10e-14 10e-13.5 10e-13 10e-12.5
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Example 1: Smooth Permeability

Fo
O

Covariance function

2
C(x,x") = o?exp (——”X )\X H )

covariance 02 =1
correlation length A = 0.3

0
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' . . N
Covariance function

2
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correlation length A = 0.3
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Example 1: Smooth Permeability

Water production rate (m3/day
300 T T T T T T T T

250

200

150

100

50 |

0 1 I I I I I I
0 41 81 122 162 203 243 284 324 365

Time (days)

= Monte Carlo simulation with 100 samples: £M¢(q,,) = 1.0 x 102
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Example 1: Smooth Permeability

NN

11
0

TP
vvvvvvvvv

m Five levels with ~ 42, 82, 162, 322, 642 cells + refinement around wells
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Example 1: Smooth Permeability

[
|
[

m Five levels with ~ 42, 82, 162, 322, 642 cells + refinement around wells

m Warmup: Run 10 samples on each level to estimate V; and C;
— used to find optimal N, for tolerance ¢ ~ EM¢

L

L L
min Z N,Cp s.t. Z /\\Z =2 5 Ny=e2 (Z m) \ /gﬁ
£=0 k=0
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Example 1: Smooth Permeability

Water production rate (m3/day
300 T T T T T T T T
—WC
mmm Multilevel MC

250

200

150

100

50 |

0 1 I I I I I I
0 41 81 122 162 203 243 284 324 365

Time (days)

= Multilevel Monte Carlo simulation: €MY(g,,) = 1.5 x 1072
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Example 1: Smooth Permeability
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[Cost G (seconds)}
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Example 1: Smooth Permeability
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0 1 2 3 4 0 1 2 3 4

m Total cost of Multilevel Monte Carlo: >, N,C; ~ 488 s
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Samples N,
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Example 1: Smooth Permeability

12
1 10 [Cost G (seconds)} Samples N,
10°

102

0 1 2 3 4 0 1 2 3 4

o
N
w
IS

m Total cost of Multilevel Monte Carlo: >, N,C; ~ 488 s

m Total cost of Monte Carlo (assuming C4 = cost of us — uz ~ cost of ug) ~ 923 s
— Similar accuracy with about half the cost
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Example 2: High-Contrast Permeability

Covariance function

I
C(x,x") = o2 exp <_||x>\x\|>

covariance 02 =1
correlation length A = 0.3
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Covariance function

I
C(x,x") = o2 exp <_||x>\x\|>

covariance 02 =1
correlation length A = 0.3
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Example 2: High-Contrast Permeability

Covariance function

R
C(x,x") = o2 exp <_||x )\x H>

covariance 02 =1
correlation length A\ = 0.3
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Example 2: High-Contrast Permeability

Water production rate (m3/day
300 T T T T T T T T

250

200

150

100

0 1 1 1 1 1 1 1

0 41 81 122 162 203 243 284 324
Time (days)

m Monte Carlo simulation with 100 samples: £MC(q,,) = 2.1 x 1072

365
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Example 2: High-Contrast Permeability

o mommmmm |
H HH Teamamasam| EIH
St ]
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L e ; N
|
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SRR i \ [
e nn A nasananany i 1 0
; JReSest g:
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m Five levels with ~ 42, 82, 162, 322, 642 cells + refinement around wells
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Example 2: High-Contrast Permeability

= | Em}

=102

m Five levels with ~ 42, 82, 162, 322, 642 cells + refinement around wells

m Warmup: Run 10 samples on each level to estimate V; and C;
— used to find optimal N, for tolerance ¢ ~ EM¢

L

L L
min Z N,Cp s.t. Z /\\z =2 5 Ny=e2 (Z m) \ /Z_j
£=0 k=0
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Example 2: High-Contrast Permeability

Water production rate (m3/day

300 T T T

—MC
mmm Multilevel MC

250

200

150

100

50 |

0 41 81 122

m Multilevel Monte Carlo simulation:

162 203 243 284 324 365
Time (days)

EMH(gy) = 1.2 x 1072
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Example 2: High-Contrast Permeability
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m Total cost of Multilevel Monte Carlo: >, N,C; ~ 1686 s

m Total cost of Monte Carlo (assuming C4 = cost of us — uz & cost of ug) ~ 909 s
— Similar variance with almost twice the cost
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Concluding Remarks

A few pitfalls and shortcomings
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Concluding Remarks

A few pitfalls and shortcomings

m Convergence theory with conditions in terms of unknown quantities

e Number of samples needed to approximate V;, C; is problem-dependent
m Use upscaling with care

e Coarsest level £ = 0 should have cell diameter h ~ correlation length A
m Very challenging to upscale complex models in a meaningful way

e Channelized reservoirs, different rock types, multiphase, etc.
. and the best methods are expensive

m Not all choices of u are appropriate!
e Rule of thumb: average of u should "make sense” for the problem at hand
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Concluding Remarks

Can we do better?
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Concluding Remarks

Can we do better?

m [evel does not necessarily mean spatial resolution!

e Solver-based: use a more accurate solver for higher levels
e.g., increasing accuracy of spatial /temporal discretization with level
e Multiscale methods (compromise between upscaling and solver accuracy)
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Concluding Remarks

Can we do better?

m [evel does not necessarily mean spatial resolution!

e Solver-based: use a more accurate solver for higher levels
e.g., increasing accuracy of spatial /temporal discretization with level
e Multiscale methods (compromise between upscaling and solver accuracy)

m MLMC does not require a geometric sequence of levels
e Sufficient that accuracy and cost increase and variance decrease with £
m Multi-index Monte Carlo — change multiple aspects of simulation with level
e Example: resolution in space and time, £ — £ = ({x, {¢)
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Developed by nuclear physicist Stanislaw Ulam during the Manhattan Project in the late 1940's

It was at that time that | suggested an obvious name for the statistical method — a suggestion
not unrelated to the fact that Stan had an uncle who would borrow money from relatives
because he "just had to go to Monte Carlo”

— Nicholas Metropolis, The Beginning of the Monte Carlo Method (1987)
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