

Reservoir Simulation and Modelling with MRST

Øystein S. Klemetsdal

Computational Geosciences, SINTEF Digital, Oslo, Norway

TRANSFORM 2021, Software underground, April 20, 2021
Slack channel: t21-tue-mrst

Overview of the tutorial 1 / 26

Short overview of MRST

– what is the purpose of this software?
– how is the software organized?
– where can I find help?

Getting started

– download or clone MRST
– using and navigating the modules
– solving an incompressible flow problem

Numerical framework

– discrete operators and automatic differentiation

More complex example

– creating and simulating a sector model

Short overview of MRST

MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Unique prototyping platform:

Standard data formats

Data structures/library routines

Fully unstructured grids

Rapid prototyping:

– discrete operators
– automatic differentiation
– object-oriented framework

Industry-standard simulation

http://www.mrst.no

MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Large international user base:

downloads from the whole world

125 master theses

62 PhD theses

270 journal papers (not by us)

150 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry Google Analytics: access pattern for www.mrst.no

Period: 1 July 2018 to 31 December 2019

Community code: software organization 5 / 26

Modular design:

small core with mature and well-tested functionality
used in many programs or modules

semi-independent modules extend core functionality

in-source documentation like in MATLAB

all modules must have code examples and/or tutorials

This simplifies how we distinguish public and in-house or
client-specific functionality

Core module:
grid structure, grid factory routines, petrophysi-
cal data, basic fluid models, automatic differentia-
tion library, setting boundary/wells/sources, reser-
voir state, visualization, etc

CO2 saturation
at 500 years

16%

12%

3%

56%

12%

Injected volume:

2.185e+07 m
3

Height of CO2−column

Residual (traps)

Residual

Residual (plume)

Movable (traps)

Movable (plume)

Leaked

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

x 10
7

co2lab

multiscale methods

discretizations

fully implicit

flow diagnostics

grid coarsening

Original permeability Upscaled (x−direction) Upscaled (y−direction)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Original

Upscaled (x)

upscaling

visualization
input decks

... ...

A
d
d
-o
n
m
od
u
le
s

MRST core

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Community code: software organization 5 / 26

Modular design:

small core with mature and well-tested functionality
used in many programs or modules

semi-independent modules extend core functionality

in-source documentation like in MATLAB

all modules must have code examples and/or tutorials

This simplifies how we distinguish public and in-house or
client-specific functionality

Core module:
grid structure, grid factory routines, petrophysi-
cal data, basic fluid models, automatic differentia-
tion library, setting boundary/wells/sources, reser-
voir state, visualization, etc

CO2 saturation
at 500 years

16%

12%

3%

56%

12%

Injected volume:

2.185e+07 m
3

Height of CO2−column

Residual (traps)

Residual

Residual (plume)

Movable (traps)

Movable (plume)

Leaked

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

x 10
7

co2lab

multiscale methods

discretizations

fully implicit

flow diagnostics

grid coarsening

Original permeability Upscaled (x−direction) Upscaled (y−direction)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Original

Upscaled (x)

upscaling

visualization
input decks

... ...

A
d
d
-o
n
m
od
u
le
s

MRST core

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Latest release: 57 modules 6 / 26

Grid generation and coarsening

ECLIPSE input and output

Upscaling / multiscale solvers

Consistent discretizations

Black-oil, EOR, compositional

Fractures: DFM, EDFM, DPDP

Geomechanics, geochemistry, geothermal

Unsaturated media (Richards eq.)

Multisegment wells (general network)

CO2 storage laboratory

Adjoints, optimization, ensembles

Pre/postprocessing/visualization

Flow diagnostics

. . .

User resources (getting help) 7 / 26

website user forum textbook

manpages tutorial codes online tutorials

New book: Advanced modeling with MRST 8 / 26

Berge et al.: Constrained Voronoi grids Al Kobaisi & Zhang: nonlinear FVM Lie & Møyner: multiscale methods

Wong et al.: embedded discrete fractures Olorode et al.; fractured unconventionals March et al.: unified framework, fractures

Varela et al.: unsaturated poroelasticity Collignon et al.: geothermal systems Andersen: coupled flow & geomechanics

Møyner: compositional

Sun et al.: chemical EOR

Møyner: state functions, AD backends

Klemetsdal & Lie: discontinuous Galerkin

Software requirements 9 / 26

Minimal requirement is MATLAB version 7.4 (R2007a). No toolboxes!

Certain modules use features that were not present in R2007a:

Automatic differentiation relies upon new-style classes (classdef) from R2008a.
Various scripts and examples use new syntax for random numbers from R2007b.
Some scripts use tilde operator from R2009b to ignore return values.
Some solvers (e.g., fully implicit) are not efficient on versions older than R2011b.

Most of MRST can be used with GNU Octave, maybe except for some GUIs. The AD-OO
solvers are somewhat slow, but will get better performance in the next release.

External dependencies:

AGMG or AMGCL for iterative linear solvers (multigrid, etc)
MATLAB-BGL (MATLAB Boost Graph Library) for graph algorithms
METIS for partitioning of fully unstructured grids, etc.

Getting started

Getting the software 11 / 26

– URL: www.mrst.no

– Free software with GNU GPL license

– Released twice per year

– Latest release: MRST 2021a, from

19/04/2021 (yesterday!)

– Provided as a self-contained archive

file (e.g., mrst-2021a.zip)

– We recommend that you join the

MRST-announce Google group

Follow development actively:
bitbucket.org/mrst/mrst-core

Installing MRST 12 / 26

Unzip the software to a subfolder mrst-2021a of your current working directory:

unzip('mrst-2021a.zip')

Once MRST is extracted to a directory, you must navigate MATLAB there. On Linux/Mac OS,

cd /home/username/mrst-2021a/

or on Windows,

cd C:\Users\username\mrst-2021a\

assuming that the files were extracted to the home directory. The startup.m file must then be run to

activate MRST,

startup;

or you can call the startup script directly

run /home/username/mrst-2021a/startup

Getting started: welcome message 13 / 26

If you start MATLAB in the directory containing MRST, or run the startup.m file, you will see the

following message

Interactive demonstration 14 / 26

The core module of MRST offers a number of examples that

introduce you to data structures and data sets, how to set up basic

solvers, how to visualize input data and simulation results, etc

>> mrstExamples

Module "core" has 14 examples:

flowSolverTutorial1.m

flowSolverTutorialAD.m

tutorialAD.m

tutorialBasicObjects.m

tutorialPlotting.m

datasets\showCaseB4.m

datasets\showJohansen.m

datasets\showNorne.m

datasets\showSAIGUP.m

datasets\showSPE10.m

grids\gridTutorialCornerPoint.m

grids\gridTutorialIntro.m

grids\gridTutorialStruct.m

grids\gridTutorialUnstruct.m

We go through the following:

– Visit the website, forum, and FAQ

– List basic tutorials, mrstExample()

– Bring up mrstExploreModules()

– Bring up mrstDatasetGUI()

Operating modules 15 / 26

Graphical user interface to modules:

mrstModule('gui')
moduleGUI

List all modules and their path

mrstPath

Load new modules

mrstModule add mimetic mpfa

Adding your own modules

mrstPath reregister distmesh ...

/home/username/mrst-2016b/utils/3rdparty/distmesh

Incompressible flow solvers 16 / 26

% Activate module for incompresisble solvers
mrstModule add incomp

%% Define the model
gravity reset on

G = cartGrid([2, 2, 30], [1, 1, 30]);
G = computeGeometry(G) ;
rock = makeRock(G, 0.1∗darcy, 1);
fluid = initSingleFluid('mu' , 1∗centi∗poise, . . .

'rho' , 1014∗kilogram/meterˆ3);
bc = pside([] , G, 'TOP' , 100.∗barsa()) ;

%% Assemble and solve the linear system
T = computeTrans(G, rock) ;
sol = incompTPFA(initResSol(G, 0.0) , . . .

G, T, fluid, 'bc' , bc) ;

%% Plot the face pressures
newplot;
plotFaces(G, 1:G.faces.num, sol.facePressure./barsa) ;
set(gca, 'ZDir' , 'reverse ' , 'DataAspectRatio' ,[1 1 10])
title('Pressure [bar] ')
view(3) , colorbar

Code: flowSolverTutorial1.m

∇ · ∇(p+ ρ~g) = 0

Will go through this code in detail.

Earliest parts of MRST:

Procedural programming

Structs for reservoir state, rock

parameters, wells, b.c., and source term

Fluid behavior: struct with function

pointers

Advantages:

hide specific details of geomodel and

fluid model

vectorization: efficient/compact code

unified access to key parameters

Numerical framework

Rapid prototyping: discrete differentiation operators 19 / 26

Conservation of momentum (Darcy’s law):

∫

Γf

~v(x) · ~nf ds = −
∫

Γf

K(x)∇p · ~nf ds

discrete: v[f] = −T [f] grad(p)[f]

Conservation of mass:
∫

∂Ωc

~v · ~n ds =

∫

Ωc

∇ · ~v d~x =

∫

Ωc

qd~x

discrete: div(v)[c] = q[c]

Two-point flux approximation

Ki

Ai,k

Kk

~ni,k
~ci,k

Ti,k = Ai,k
~ci,k ·Ki~ni,k

|~ci,k|2

Tik = [T−1
i,k + T−1

k,i]
−1

vik = Tik(pi − pk)

Rapid prototyping: discrete differentiation operators 19 / 26

Conservation of momentum (Darcy’s law):

∫

Γf

~v(x) · ~nf ds = −
∫

Γf

K(x)∇p · ~nf ds

discrete: v[f] = −T [f] grad(p)[f]

Conservation of mass:
∫

∂Ωc

~v · ~n ds =

∫

Ωc

∇ · ~v d~x =

∫

Ωc

qd~x

discrete: div(v)[c] = q[c]

Two-point flux approximation

Ki

Ai,k

Kk

~ni,k
~ci,k

Ti,k = Ai,k
~ci,k ·Ki~ni,k

|~ci,k|2

Tik = [T−1
i,k + T−1

k,i]
−1

vik = Tik(pi − pk)

Rapid prototyping: discrete differentiation operators 20 / 26

Grid structure in MRST

5

6

7

8

2

1

2

3

4 1

3 4

5

6

7
8

9

c F(c)

1 1

1 2

1 3

1 4

2 5

2 6

2 7

2 8

2 2

3 1
...

...
...

...

Map: cell → faces

f

1

2

3

4

5

6

7

8
...
...

C1

3

1

1

9

4

2

2

2
...
...

C2

1

2

8

1

2

5

6

7
...
...

Map: face → cells

Idealized models Industry models

For finite volumes, the discrete grad operator maps from cell pair C1(f), C2(f) to face f :

grad(p)[f] = p[C2(f)]− p[C1(f)],

where p[c] is a scalar quantity associated with cell c. Discrete div maps from faces to cells.

Both are linear operators and can be represented as sparse matrix multiplications.

Rapid prototyping: discrete differentiation operators 20 / 26

Grid structure in MRST

5

6

7

8

2

1

2

3

4 1

3 4

5

6

7
8

9

c F(c)

1 1

1 2

1 3

1 4

2 5

2 6

2 7

2 8

2 2

3 1
...

...
...

...

Map: cell → faces

f

1

2

3

4

5

6

7

8
...
...

C1

3

1

1

9

4

2

2

2
...
...

C2

1

2

8

1

2

5

6

7
...
...

Map: face → cells

Idealized models Industry models

For finite volumes, the discrete grad operator maps from cell pair C1(f), C2(f) to face f :

grad(p)[f] = p[C2(f)]− p[C1(f)],

where p[c] is a scalar quantity associated with cell c. Discrete div maps from faces to cells.

Both are linear operators and can be represented as sparse matrix multiplications.

Close correspondence with mathematics 21 / 26

Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Discretization of flow models leads to large systems of nonlinear equations. Can be
linearized and solved with Newton’s method

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)

Coding necessary Jacobians is time-consuming and error prone

Close correspondence with mathematics 21 / 26

Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Discretization of flow models leads to large systems of nonlinear equations. Can be
linearized and solved with Newton’s method

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)

Coding necessary Jacobians is time-consuming and error prone

Rapid prototyping: automatic differentiation 22 / 26

General idea:

Any code consists of a limited set of arithmetic operations and elementary functions

Introduce an extended pair, 〈x, 1〉, i.e., the value x and its derivative 1

Use chain rule and elementary derivative rules to mechanically accumulate derivatives at
specific values of x

– Elementary: v = sin(x) −→ 〈v〉 = 〈sinx, cosx〉
– Arithmetic: v = fg −→ 〈v〉 = 〈fg, fgx + fxg〉
– Chain rule: v = exp(f(x)) −→ 〈v〉 = 〈exp(f(x)), exp(f(x))f ′(x)〉

Use operator overloading to avoid messing up code

[x,y] = initVariablesADI(1,2);

z = 3*exp(-x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y
∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2

Solving the Poisson equation: unstructured grid 23 / 26

% Grid and grid information

load seamount

G = pebi(triangleGrid([x(:) y(:)])) ;

G = computeGeometry(G) ;

rock = makeRock(G, 1, 1);

nc = G.cells.num;

% Operators

S = setupOperatorsTPFA(G,rock) ; spy(S.C) ;

% Assemble and solve equations

p = initVariablesADI(zeros(nc,1)) ;

q = zeros(nc, 1)

q([135 282 17]) = [−1 .5 .5] ;

eq = S.Div(S.T.∗S.Grad(p))+q;

eq(1) = eq(1) + p(1);

p =−eq.jac{1}\eq.val;

plotCellData(G,p) ;

Discretization of −∇ · (K∇p) = q gives the

residual flow equation

0 = div(T grad(p)) + q = F(p)

Automatic differentiation gives us ∂F/∂p

Go through the code in detail:

Explain the gridding

Show the grid structure

Look at the operators

Look at Jacobians, etc

More complex example

Example: from geological horizons to simulation 25 / 26

Worked simulation example:

Define horizons

Extrude grid to mimic stratigraphy

Introduce structural architecture

Add petrophysics

Define wells

Setup fluid model

Initial state

Simulation schedule (well controls)

Simulate with computational steering

