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Motivation

• Geothermal energy systems often exhibit very complex geology
— strong and abrupt variations in geological properties— intertwined faults/fracture networks and multiple long, deviating well trajectories

• Governing equations have very different timescales
— heat rapidly advected through wellbores/fractures, slowly conducted through solid rock

• Mass/energy are strongly coupled through temperature/pressure-dependent density
→ Strongly coupled nonlinear systems that are challenging to solve numerically
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Motivation
But: strong nonlinearities are chiefly localized in space

Temperature Largest residual sensitivity per cell

’

Here: exploit this locality to devise efficient domain-decomposition nonlinearsolutions strategies applicable to practical simulation of geothermal energy systems
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Geothermal simulation software and selected references

• There exists a myriad of excellent software capable of simulating geothermal systems
— DARTS (TU Delft), AD-GPRS (Stanford), CSMP++ (ETH Zürich/Uni Melbourne ++),PorePy (UiB), TOUGH2 (LBNL), Dumux (Uni Stuttgart), JutulDarcy, MRST (SINTEF), etc.

• Many approaches to tackling various challenging aspects of geothermal simulation
— Sequential splitting schemes (Weis et al. 2014; Wong, Kwok, et al. 2019)— Efficient, operator-based linearization (Wang et al. 2020)— Fracture modelling (HosseiniMehr et al. 2020)— Adaptive mesh refinement (Salinas et al. 2021)— Peaceman-type formulations for FEM in geothermal simulations (Yapparova et al. 2022)— Negative compressibility (Wong, Horne, and Tchelepi 2018)— Domain decomposition targeting local/unbalanced nonlinearities (Wong 2018)
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Governing equations and discretization

Conservation of mass – finite volumes in space, implicit backward Euler in time

Rn+1
w = 1

∆tn (Mw
n+1 − Mn

w) + div(Vw
n+1)− Qw

n+1 = 0

Vw = −upw(ρw/µw)[Kgrad(p)− gfavg(ρw)Kgrad(z)]

• div, upw, favg: Discrete divergence, upwind, and face average operators
• Kgrad: discrete permeability-gradient operator K∇

— linear/nonlinear two-point, multipoint, mimetic, etc.— Here: linear two-point flux approximation (comparison: Klemetsdal et. al. 2020, FVCA-IX)
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Governing equations and discretization

Conservation of energy – finite volumes in space, implicit backward Euler in time

Rn+1
h = 1

∆tn ([Mwuw + Mrur]
n+1 − [Mwuw + Mrur]

n)

+ div([Vwhw]
n+1 + Hn+1)− [Qwhw]

n+1 − Qn+1
h = 0

H = −Θgrad(T)

• Θgrad: discrete thermal conductivity/gradient operator Λ∇
• Moreover: multisegment wellbore and discrete fracure modelling

”Modelling and optimization of shallow geothermal energy storage” (Klemetsdal et. al, 2023 (in review))
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Nonlinear domain decomposition

• Partition domain into non-overlapping subdomains (here: two for simplicity)
R(u) = (R1(u1,u2),R2(u1,u2)) = 0

• Additive Schwarz: define solution operator Sa(u) = (Sa
1(u),Sa

2(u)), where
R1

(
Sa

1(u),u2
)
= 0, and R2

(
u1,Sa

2(u)
)
= 0

• Multiplicative Schwarz: define solution operator Sm(u) = (Sm
1 (u),Sm

2 (u)), where
R1

(
Sm

1 (u),u2
)
= 0, and R2

(
Sm

1 (u),Sm
2 (u)

)
= 0

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = S(u), or F(u) ≡ u − S(u) = 0
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = S(u), or F(u) ≡ u − S(u) = 0

• Fixed-point schemes tend to have poor convergence properties
— Acceleration: Aitken, Anderson, quasi-Newton (Jiang and Tchelepi 2019)

• As a nonlinear preconditionder: apply Newton’s method directly to F(u)
→ Additive/Multiplicative Schwarz Preconditioned Exact Newton Method (ASPEN/MSPEN)
(Cai and Keyes 2002; Liu, Keyes, and Sun 2013; Wong 2018, ...)

uk+1 = uk +∆u, −∂F
∂u

∆u = F(uk), where ∂F
∂u

= I −

[
∂S1
∂u
∂S2
∂u

]

— Challenge: F implicitly defined through operator S – how to compute ∂F/∂u?
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Nonlinear domain decomposition preconditioning

• Use that R1(Sa/m
1 (u),u2) = 0 to find

∂R1

∂u
=

∂R1

∂u1

∂Sa/m
1

∂u
+

∂R1

∂u2

∂u2

∂u
= 0 ⇒ ∂Sa/m

1

∂u
= −

(
∂R1

∂u1

)−1
∂R1

∂u2

∂u2

∂u

• Additive: analogous derivation for ∂Sa
2/∂u

• Multiplicative: Use that R2(Sm
1 (u),Sm

1 (u2)) = 0 to find
∂R2

∂u
=

∂R2

∂u1

∂Sm
1

∂u
+

∂R2

∂u2

∂Sm
2

∂u
= 0 ⇒ ∂Sm

2

∂u
= −

(
∂R2

∂u2

)−1
∂R2

∂u1

∂Sm
1

∂u

• Natural extension to N subdomains
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Nonlinear domain decomposition preconditioning

• Jacobian ∂F/∂u generally dense → expensive to build, challenging to precondition
• Breakdown of Jacobian blocks reveals that1

∂F
∂u

= D−1 ∂R
∂u

• Where D is a block matrix
Additive: D =

[
∂R1
∂u1

0
0 ∂R2

∂u2

]
, Multiplicative: D =

[
∂R1
∂u1

0
∂R2
∂u1

∂R2
∂u2

]

→ Can interpret linearized system as
−∂F
∂u

∆u = F(u) ⇐⇒ −∂R
∂u

∆u = DF(u).

— We’re back on home ground – we know what preconditioners to use!

1”A numerical study of ASPEN (...)”, Øystein Klemetsdal et al. 2021 12 / 22
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1”A numerical study of ASPEN (...)”, Øystein Klemetsdal et al. 2021

Original problem Jacobian (almost)
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Nonlinear domain decomposition preconditioning

Illustrating example: 1D Buckley-Leverett displacement with five subdomains
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Example: Thermal storage in subset of SPE10 Model 2

• Layer 10 of SPE10 Model 2 (Christie and Blunt 2001)
— Charge: four months at 5 l/s and 90 ◦C through center well— Discharge: four months at 5 l/s and 10 ◦C through corner wells

• Compare two nonlinear solution strategies
— Standard Newton— ASPEN with 5 × 7 subdomains
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Example: Thermal storage in subset of SPE10 Model 2
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Example: Enhanced Geothermal System (EGS)1

• Fractured, low-perm, high-temp, subsurface rock
• Water circulates through the fracture network

→ Fractures act as fins of a heat exchanger
• Here: artificial network in confined, insulated box
• Injection temp: 10 ◦C, reservoir temp: 95 ◦C

• Compare Newton and ASPEN
— Three subdomains with fractures + wells only— 21 subdomains the for the remaining matrix

1From “Simulation of Geothermal Systems Using MRST”, Collignon, Øystein Klemetsdal, and Møyner 2021 17 / 22
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Example: Enhanced Geothermal System (EGS)
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Example: Cyclic charging of fractured reservoir 1

• Fractured, 300 m deep reservoir
• Injector circled by eight producers
• Five cycles of charging and dischargingthrough center well

— Charge: 6 months, 50 l/s, 140 ◦C— Discharge: 6 months, 50 l/s, 10 ◦ C
• ”Spaghetti topology” – significant buoyancyeffects inside wellbore

— Need mulitsegment well formulation

1Adapted from “Modeling and Optimization of Shallow Geothermal Heat Storage”, Ø. Klemetsdal et al. 2022 19 / 22



Example: Cyclic charging of fractured reservoir 1

• Compare Newton with multiplicativefield-split-type strategy (NLDD):
1. Solve conservation equations in wellborewith fixed reservoir properties2. Solve conservation equations in reservoirwith fixed wellbore properties3. Do a single Newton step4. If not converged, go to 1

1Adapted from “Modeling and Optimization of Shallow Geothermal Heat Storage”, Ø. Klemetsdal et al. 2022 19 / 22



Example: Cyclic charging of fractured reservoir
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Concluding remarks

Conclusions
• Efficient Nonlinear solution strategies applicable to realistic geothermal problems
• Very robust with respect to timestep length
• Significant reduction in nonlinear iterations for examples considered

— SPE10 layer 10: 36 %, EGS: 65 %, Cyclic storage: 36 %
• But: local solves introduces additional cost that may prohibit speedup

— Local stage is embarrassingly parallel, efficient implementation possible— Recent work indicates that adaptive strategies can be very beneficial
An Adaptive Newton–ASPEN Solver for Complex Reservoir Models, Lie, Møyner, and Ø. A. Klemetsdal 2023

Future work
• Combined multiplicative/adaptive preconditioning for wells/fractures/matrix
• Combine with dynamic, locally adaptive timestepping
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