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SINTEF Motivation

e Geothermal energy systems often exhibit very complex geology

— strong and abrupt variations in geological properties
— intertwined faults/fracture networks and multiple long, deviating well trajectories

e Governing equations have very different timescales
— heat rapidly advected through wellbores/fractures, slowly conducted through solid rock

e Mass/energy are strongly coupled through temperature/pressure-dependent density

— Strongly coupled nonlinear systems that are challenging to solve numerically
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But: strong nonlinearities are chiefly localized in space
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Here: exploit this locality to devise efficient domain-decomposition nonlinear
solutions strategies applicable to practical simulation of geothermal energy systems
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B Geothermal simulation software and selected references

e There exists a myriad of excellent software capable of simulating geothermal systems

— DARTS (TU Delft), AD-GPRS (Stanford), CSMP++ (ETH Zirich/Uni Melbourne ++),
PorePy (UiB), TOUGH2 (LBNL), Dumu* (Uni Stuttgart), JutulDarcy, MRST (SINTEF), etc.
e Many approaches to tackling various challenging aspects of geothermal simulation
— Sequential splitting schemes (Weis et al. 2014; Wong, Kwok, et al. 2019)
— Efficient, operator-based linearization (Wang et al. 2020)
— Fracture modelling (HosseiniMehr et al. 2020)
— Adaptive mesh refinement (Salinas et al. 2021)
— Peaceman-type formulations for FEM in geothermal simulations (Yapparova et al. 2022)
— Negative compressibility (Wong, Horne, and Tchelepi 2018)
— Domain decomposition targeting local/unbalanced nonlinearities (Wong 2018)
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Sirer Governing equations and discretization

Conservation of mass - finite volumes in space, implicit backward Euler in time

Ry = & (M, — M) +div(V,,"T1) — Q" =0
Vi = —upw(pw/pw)[Kgrad(p) — gfavg(pw)Kgrad(z)]
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Conservation of mass - finite volumes in space, implicit backward Euler in time
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Sirer Governing equations and discretization

Conservation of mass - finite volumes in space, implicit backward Euler in time

0

Rn+1 o M n+1 Mn _|_ div V n+1 an+1 —

w - At"
Vo~ St gty  seso et

e div, upw, favg: Discrete divergence, upwind, and face average operators
e Kgrad: discrete permeability-gradient operator KV

— linear/nonlinear two-point, multipoint, mimetic, etc.
— Here: linear two-point flux approximation (comparison: Klemetsdal et. al. 2020, FVCA-IX)
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Sirer Governing equations and discretization

Conservation of energy - finite volumes in space, implicit backward Euler in time

R = L ((Myuy + M, "t — [Myuy, + M, ]")
+ diV([VWhW]n+1 +Hn+1) . [Owhw]nJrl o QZ—H -0
H = —Ograd(T)

7/ 22



el Governing equations and discretization

Conservation of energy - finite volumes in space, implicit backward Euler in time

Fluid energy Rock energy

RZ+1 = (M, + Mo "' — [Myu, + Mo, ]")
+ div([Vywhy " + H'Y) — [Qyh, " — Q1 =
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e Ograd: discrete thermal conductivity/gradient operator AV

tﬂ.

e Moreover: multisegment wellbore and discrete fracure modelling

"Modelling and optimization of shallow geothermal energy storage” (Klemetsdal et. al, 2023 (in review))
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SINTEE Nonlinear domain decomposition

e Partition domain into non-overlapping subdomains (here: two for simplicity)
R(u) = (Ry(uj,uy),Ry(u3,up)) =0
¢ Additive Schwarz: define solution operator $(u) = (S¢(u), S$(u)), where
Ri(S{(u),uy) =0, and Ry(u;,S3(u)) =0
o Multiplicative Schwarz: define solution operator S™(u) = (ST (u), S*(u)), where

Ri(ST'(u),u;) =0, and Ry(S7'(u), S5 (u)) =0
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¢ Additive Schwarz: define solution operator $(u) = (S¢(u), S$(u)), where
Ri(S{(u),uy) =0, and Ry(u;,S3(u)) =0
o Multiplicative Schwarz: define solution operator S™(u) = (ST (u), S*(u)), where
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Equivalent, fixed-point formulation of R(u) = 0

Find usothatu = S(u),or F(u) =u—S(u) =0
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el Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find uso thatu = S(u),or F(u) =u—S(u) =0

e Fixed-point schemes tend to have poor convergence properties

— Acceleration: Aitken, Anderson, quasi-Newton (Jiang and Tchelepi 2019)
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el Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find uso thatu = S(u),or F(u) =u—S(u) =0

e Fixed-point schemes tend to have poor convergence properties
— Acceleration: Aitken, Anderson, quasi-Newton (Jiang and Tchelepi 2019)

¢ As a nonlinear preconditionder: apply Newton’s method directly to F(u)
— Additive/Multiplicative Schwarz Preconditioned Exact Newton Method (ASPEN/MSPEN)
(Cai and Keyes 2002; Liu, Keyes, and Sun 2013; Wong 2018, ...)

OF
k+1 _ Jk A o
u wt A ou ou 98,

28,
F
Au = F(u"), where F ;- [ 8"]
Ju

— Challenge: F implicitly defined through operator S - how to compute OF /0u?
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el Nonlinear domain decomposition preconditioning

e Use that Ry (SY™(u), uy) = 0 to find

ORy _ ORyOS{™  ORyOw o OS{™ _(ORy\ "N ORy Ouy
du  Ou; Ou dus ou ou ouy dus du
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el Nonlinear domain decomposition preconditioning

Use that Ry (8™ (u), uy) = O to find

ORy _ ORyOS{™  ORyOw o OS{™ _(ORy\ "N ORy Ouy
du  Ou; Ou dus ou ou ouy dus du

Additive: analogous derivation for S35 /0u

Multiplicative: Use that Ry (ST (u), ST'(uy)) = 0 to find

ORy _OR, OSY  ORyOSy _  OSp (DR, ORy OST
ou Ou; Oou = Ouy Ou ou

- ouy Ju; Ou

Natural extension to N subdomains
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Nonlinear domain decomposition preconditioning

SINTEF

e Jacobian OF /Ou generally dense — expensive to build, challenging to precondition

e Breakdown of Jacobian blocks reveals that’

OF OR
— —_p 1=
ou ou
e Where D is a block matrix
OR; ORy 0
Additive: D= |91 o | Multiplicative: D= |J% ¢
0w our  ou

12/22

""A numerical study of ASPEN (...)", @ystein Klemetsdal et al. 2021



Nonlinear domain decomposition preconditioning

SINTEF

e Jacobian OF /Ou generally dense — expensive to build, challenging to precondition

e Breakdown of Jacobian blocks reveals that’

OF OR
— —_p 1=
ou ou
e Where D is a block matrix
OR; ORy 0
Additive: D= |91 o | Multiplicative: D= |J% ¢
0 Fu our ou
— Can interpret linearized system as /{onginal roblem Jacobian (aImost)J

OF OR
——Au=F ——Au = DF(u).
FulY (U — SuY (u)
— We're back on home ground - we know what preconditioners to use!
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Nonlinear domain decomposition preconditioning

lllustrating example: 1D Buckley-Leverett displacement with five subdomains
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Sinrer Example: Thermal storage in subset of SPE10 Model 2

e Layer 10 of SPE10 Model 2 (Christie and Blunt 2001)

— Charge: four months at 5 I/s and 90 °C through center well
— Discharge: four months at 5 |/s and 10 °C through corner wells

e Compare two nonlinear solution strategies

— Standard Newton
— ASPEN with 5 x 7 subdomains
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Sirer Example: Thermal storage in subset of SPE10 Model 2
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SF Example: Enhanced Geothermal System (EGS)’

Fractured, low-perm, high-temp, subsurface rock

Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

Injection temp: 10 °C, reservoir temp: 95 °C

"From “Simulation of Geothermal Systems Using MRST”, Collignon, @ystein Klemetsdal, and Mgyner 2021 17/ 22
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Example: Enhanced Geothermal System (EGS)’

Fractured, low-perm, high-temp, subsurface rock

Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

Injection temp: 10 °C, reservoir temp: 95 °C

Compare Newton and ASPEN

— Three subdomains with fractures + wells only
— 21 subdomains the for the remaining matrix

"From “Simulation of Geothermal Systems Using MRST”, Collignon, @ystein Klemetsdal, and Mgyner 2021 17/ 22



Sivrer Example: Enhanced Geothermal System (EGS)

C iterations
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Example: Cyclic charging of fractured reservoir’

e Fractured, 300 m deep reservoir
e Injector circled by eight producers

o Five cycles of charging and discharging
through center well

— Charge: 6 months, 50 /s, 140 °C
— Discharge: 6 months, 501/s,10 ° C

e "Spaghetti topology” - significant buoyancy
effects inside wellbore

— Need mulitsegment well formulation

1Adapted from “Modeling and Optimization of Shallow Geothermal Heat Storage”, @. Klemetsdal et al. 2022 19 /22



Sirer Example: Cyclic charging of fractured reservoir’

e Compare Newton with multiplicative
field-split-type strategy (NLDD):

1. Solve conservation equations in wellbore
with fixed reservoir properties

2. Solve conservation equations in reservoir
with fixed wellbore properties

3. Do asingle Newton step

4. If not converged, go to 1

1Adapted from “Modeling and Optimization of Shallow Geothermal Heat Storage”, @. Klemetsdal et al. 2022 19 /22
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Example: Cyclic charging of fractured reservoir
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Sirer Concluding remarks

Conclusions

Efficient Nonlinear solution strategies applicable to realistic geothermal problems
Very robust with respect to timestep length
Significant reduction in nonlinear iterations for examples considered
— SPE10 layer 10: 36 %, EGS: 65 %, Cyclic storage: 36 %
But: local solves introduces additional cost that may prohibit speedup

— Local stage is embarrassingly parallel, efficient implementation possible
— Recent work indicates that adaptive strategies can be very beneficial
An Adaptive Newton-ASPEN Solver for Complex Reservoir Models, Lie, Mayner, and @. A. Klemetsdal 2023
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Concluding remarks

Conclusions
Efficient Nonlinear solution strategies applicable to realistic geothermal problems

Very robust with respect to timestep length

Significant reduction in nonlinear iterations for examples considered
— SPE10 layer 10: 36 %, EGS: 65 %, Cyclic storage: 36 %

But: local solves introduces additional cost that may prohibit speedup

— Local stage is embarrassingly parallel, efficient implementation possible
— Recent work indicates that adaptive strategies can be very beneficial
An Adaptive Newton-ASPEN Solver for Complex Reservoir Models, Lie, Mayner, and @. A. Klemetsdal 2023

Future work
e Combined multiplicative/adaptive preconditioning for wells/fractures/matrix
e Combine with dynamic, locally adaptive timestepping
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