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Introduction

� Field scale simulations: numerical diffusion masks important physics

• Viscous fingering1, shocks, misscible displacement2

• Particularly evident in simulation of EOR3 (polymer, solvent gas etc) and compositional
behavior

� Counteracted by higher-order spatial discretizations

• Continuous4 and discontinuous5 Galerkin methods, WENO6, etc.

� Higher-order discretizations only used to limited extent on real reservoir models

• Cumbersome to implement in implicit setting
• Hard to formulate on irregular cell geometries

� Herein: discuss how WENO and Discontinuous Galerkin methods can be adapted to implicit
reservoir simulation on unstructured and stratigraphic grids

1Riaz and Tchelepi, 2004 2Ewing et al., 1984 3Holing et al., 1990 4Arbogast and Wheeler, 1996
5Rivière and Wheeler, 2002 6Liu et. al, 1994
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Why do we need implicit methods?

� Consider φut + ~v · ∇u = 0, ~v = − 1
µK∇p

• Large variations in petrophysical properties (porosity φ, permeability K)
• Large variations in |~v |: stagnant regions/high flow near wells

→ Explicit method: severe time-step restrictions, but significant smearing even with CFL < 1
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Discretization

� Discrete conservation of mass for phase α in cell i :

1
∆t

[
Mi

α(un+1, ψ)−Mi
α(un, ψ)

]
+ F i

α(un+1, ψ)−Qi
α(un+1, ψ) = 0

Mi
α(u, ψ) =

∫
Ωi

[
φραSα

]
ψ dV

F i
α(u, ψ) =

∑
j∈N (i)

∫
Γij

[ρα~vα · ~nij ]ψ dσ −
∫

Ωi

[ρα~vα] · ∇ψ dV

Qi
α(u, ψ) =

∫
Ωi

qαψ dV

~vα · ~nij
Ωi Ωj

Γij

N (i)

Accumulation Flux Sources/sinks
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Discretization

� Flux terms needs special attention:

F i
α(u, ψ) =

∑
j∈N (i)

∫
Γij

[ρα~vα · ~nij ]ψ dσ −
∫

Ωi

[ρα~vα] · ∇ψ dV

� Interface fluxes given by Darcy’s law

(ρα~vα · ~n)ij = − (ραλαK∇pα · ~n)ij

� Two-point flux approximation:

(K∇pα·~n)ij = Tij(pj−pi ), Tij =

(
nTi,jKi~ci,j

|ci,j |2
+

nTj,iKj~cj,i

|cj,i |2

)

Ωi Ωj

Γij

~cj ,i
~ci ,j
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Upstream-weight mobilities:

λij =

{
λ− (~vα · ~n)ij > 0

λ+ otherwise

Averaged density
ρij = 1

2
(ρ− + ρ+)
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Weighted essentially non-oscillatory discretization (WENO)

� Second-order scheme: local interpolation of λ using neighbors N (i)
� N neighbors →

(
N
2

)
planes (typically choose N planes)

� N gradient approximations

{σk
i }Nk=1, σk

i ≈ ∇λi

Primary stencils Secondary stencils
(i , j1, j2) (i , j1, j3)
(i , j2, j3) (i , j1, j4)
(i , j3, j4) (i , j1, j5)
(i , j4, j5) (i , j1, j6)
(i , j5, j6) (i , j2, j4)
(i , j6, j7) (i , j2, j5)
(i , j7, j1) (i , j2, j6)

...

i
j1

j2j3

j4

j5
j6

j7
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Weighted essentially non-oscillatory discretization (WENO)

� Use planes to construct N linear reconstructions λ̂ki (x) = λi + σk
i (x− xi )

� WENO: write reconstruction as convex combination

λ̂i (x) =
N∑

k=1

wk
i λ̂

k
i (x)

� Given linear weights,
∑

k γ
k
i = 1, we compute nonlinear weights:

wk
i = βk

i /

Ni∑
k=1

βk
i , βk

i = γki /
(
ε+ Λk

i

)2
, Λk

i = |~σk
i |2 |Ωi |
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Discontinuous Galerkin discretization (dG)

� dG(k): Choose basis functions {ψ} basis for Pk :

1
∆t

[
Mi

α(un+1, ψ)−Mi
α(un, ψ)

]
+ F i

α(un+1, ψ)−Qi
α(un+1, ψ) = 0

� Unstructured and skewed cell geometries
→ Impractical to construct orthonormal basis functions

� Pragmatic solution: tensor products of Legendre
polynomials on bounding box

ψi
j (x) =

{
`r

(
x−xi

∆xi/2

)
`s

(
y−yi

∆yi/2

)
`t

(
z−zi

∆zi/2

)
, x ∈ Ωi ,

0, x 6∈ Ωi ,

� Simple ”limiter” strategy: reduce to dG(0)

• if values outside physical range
• if jump across cell interfaces > ε

Ωi
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Discontinuous Galerkin discretization (dG)

� How to evaluate integrals over irregular cell geometries?
→ Cubature rules by moment fittingψ

i
1(ξ1) . . . ψi

1(ξm)
...

. . .
...

ψi
n(ξ1) . . . ψi

n(ξm)


w1

...
wm

 =
1

|Ω|


∫

Ω
ψi

1 dV
...∫

Ω
ψi
n dV


︸ ︷︷ ︸
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Autmatic differentiation

� Linearize and neglect higher-order terms → Newton-Raphson method:

uk+1 = uk + ∆u, −J∆u = R

� Calculation of Jacobian J: involved and error-prone process → automatic differentiation

• Facilitates implementation of higher-order schemes and nonlinear interpolations

Automatic differentiation: evaluation of residuals consist of a nested sequence of elementary binary operations and unary
operations. Expand each variable with data elements representing derivatives wrt. all primary variables. Combine chain rule and
elementary differentiation rules to analytically evaluate all derivatives. All you have to do is code the residual evaluation, and
then Jacobians are computed simultaneously by operator overloading.

Jacobian
Ji,j = ∂Ri/∂uj

Residual

9 / 17



Example 2: subset of SPE 10 Model 2

� Layer 70 of SPE10 Model 2

� Fluvial sandstone channels on mud-
stone background

� Quadratic relperms, slightly compress-
ible fluids

� Injection of water over 2000 days

dG(0) dG(1)

WENO

10 / 17



Example 2: subset of SPE 10 Model 2

� Layer 70 of SPE10 Model 2

� Fluvial sandstone channels on mud-
stone background

� Quadratic relperms, slightly compress-
ible fluids

� Injection of water over 2000 days

dG(0) dG(1)

WENO

10 / 17



Example 2: subset of SPE 10 Model 2

� Layer 70 of SPE10 Model 2

� Fluvial sandstone channels on mud-
stone background

� Quadratic relperms, slightly compress-
ible fluids

� Injection of water over 2000 days

dG(0) dG(1)

WENO

10 / 17



Example 2: subset of SPE 10 Model 2

� Layer 70 of SPE10 Model 2

� Fluvial sandstone channels on mud-
stone background

� Quadratic relperms, slightly compress-
ible fluids

� Injection of water over 2000 days

dG(0) dG(1)

WENO

10 / 17



Example 2: subset of SPE10 Model 2

0 500 1000 1500 2000

Time (days)
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0.2

0.4
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1

W
a

te
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dG(0)

dG(1)

WENO

Similar breakthrough for
higher-order solutions dG(0) more smeared

outside channels
→ later breakthrough
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Subset of SAIGUP realization

� Shallow-marine oil reservoir, modeled in the SAIGUP study1

� Spans lateral area of ∼ 9× 3 km2, 40× 120× 20 corner-point grid, several major faults

1Manzocchi et al., 2008
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Subset of SAIGUP realization

� Skewed and irregular cell geometries with complex topology – up to 20 neighbors

� Extreme aspect ratios – larges to smalles face area = 2.6× 104

Centroid outside cell
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Subset of SAIGUP realization

� WENO stencil robustness:

• local affine transformation
• use only one cell in each logical direction, chosen based on inteface area

� dG: bounding box basis functions greatly simplifies implementation

Centroid outside cell
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Example 2: Subset of SAIGUP realization

� Extract three top layers

� Pressure drop from west to east

� Equal viscosities, linear relperms

� Higher-order methods: visibly sharper
and less diffusive profiles

dG(0) dG(1)

WENO
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Closing remarks

� Implementation complexity
WENO Finite volume scheme → eas(y/ier) to build on existing simulator

dG Requires heavy numerical machinery (basis functions, cubature rules, grid geometry ...)

� Computational complexity
WENO Same number of unknowns (one per cell per phase/component), but denser stencil

dG Large number of unknowns:
(
k+d
k

)
, observed slover nonlinear convergence

� But: dG stencil restriced to the cell and its upstream neighbors

• Reorder grid cells based on intercell flux graph
→ transport subproblem can be solved cell-by-cell in topological order1,2

1Natvig and Lie, 2008 2Klemetsdal et al., 2018
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Nonlinear solver with optimal reordering

dG(0) dG(0) dG(0)

dG(1) dG(1) dG(1)
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Nonlinear solver with optimal reordering

dG(0) dG(0) dG(0)

dG(1) dG(1) dG(1)

Most iterations spent at water front

Large portion of cells already converged
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Why do we need implicit methods?

� Consider φut + ~v · ∇u = 0, ~v = − 1
µK∇p

• Large variations in petrophysical properties (porosity φ, permeability K)
• Large variations in |~v |: stagnant regions/high flow near wells

→ Explicit method: severe time-step restrictions, but significant smearing even with CFL < 1
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1 1
M 1 1 1 1 1 1 1 1

φut + ux = 0 uτ + ux = 0Transformation τ = φx

Modified equation (implicit/explicit first order) qt + qτ = 1
2
(∆τ ±∆t)qττ

→ smearing of discontinuity across a width O
(√

t(∆τ ±∆t))

Scheme with CFL number ν (i.e., ∆t = ν ∆x
M

) gives overall smearing

9

10

(
∆xφ±∆t

)
︸ ︷︷ ︸

high-porosity region

+
1

10M

(∆xφ

M
±∆t

)
︸ ︷︷ ︸

low-porosity region

=
9∆x

10

(
1± ν

M

)
+

∆x

10M2

(
1± ν

)
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