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Introduction

Field scale simulations: numerical diffusion masks important physics

e \iscous fingeringl, shocks, misscible displacement2
e Particularly evident in simulation of EOR® (polymer, solvent gas etc) and compositional
behavior

Counteracted by higher-order spatial discretizations
e Continuous* and discontinuous® Galerkin methods, WENOS, etc.

Higher-order discretizations only used to limited extent on real reservoir models

e Cumbersome to implement in implicit setting
e Hard to formulate on irregular cell geometries

Herein: discuss how WENQO and Discontinuous Galerkin methods can be adapted to implicit
reservoir simulation on unstructured and stratigraphic grids

IRiaz and Tchelepi, 2004 2Ewing et al., 1984 3Holing et al., 1990  *Arbogast and Wheeler, 1996
5Riviere and Wheeler, 2002  6Liu et. al, 1994



Why do we need implicit methods?

= Consider pu; + vV-Vu=0, V= —%KVp

e Large variations in petrophysical properties (porosity ¢, permeability K)
e Large variations in |V|: stagnant regions/high flow near wells

— Explicit method: severe time-step restrictions, but significant smearing even with CFL < 1
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Discretization

= Discrete conservation of mass for phase « in cell i

LM ) — ML (U, 0)] + FL(u™ o) — QL (u™ 0) = 0

Sources/sinks

MQ(U,’W :/Q [¢pa5a]1/1 dv
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Discretization

= Flux terms needs special attention:

Fi(u, 9 /[pava il do — / [PaVa] - Vb AV
JEN(i)
= Interface fluxes given by Darcy’s law

(PaVa - M)ij = = (ParaKVpq - 1)

= Two-point flux approximation:

-
(KVpa-m)j = Ty(pj—pi), Tj=|—L1= 2
|C/,J| |CJ ’|
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Discretization

= Flux terms needs special attention:

Falwv) =3 /[pam nulwda—/[pava] Vi dV

JEN(i)

u Interface fluxes given by Darcy's law Averagled iiensit)i
pi = 3(p” +p7)

(PaVe - M) = = (ParaKVpo - 1)

= Two-point flux approximation:

)

Upstream-weight mobilities:

=N

AT otherwise

n'.
KVpo-m) = Ti(pi—pi), Tj=
(KVpa-n); i(Pj—pPi) ij ( ENE T ERE }



Weighted essentially non-oscillatory discretization (WENO)

= Second-order scheme: local interpolation of A using neighbors N (/)
= N neighbors — (g’) planes (typically choose N planes)

= N gradient approximations

{oihi, of = VN

Primary stencils

Secondary stencils

(iv.jla.jZ)
(i7j27.j3)
(i7j37j4)
(i7j47j5)
(1, Js+Jo)
(i7j67j7)
(i, jz: 1)

(’:3.1:17./:3)
(7sJ1Ja)
(Ia.jla./5§

(iajlajG

(’:7.1:27_]:5)
(’7./27./6)
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Weighted essentially non-oscillatory discretization (WENO)

= Use planes to construct N linear reconstructions AX(x) = \; 4+ o¥(x — x;)
= WENO: write reconstruction as convex combination

N
Ai(x) =Y wi A (x)
k=1
= Given linear weights, >, vk =1, we compute nonlinear weights:

N;
2 -
wi= Bl B Bl =k e N N = |ER |
k=1
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[ Smoothness indicator




Discontinuous Galerkin discretization (dG)

= dG(k): Choose basis functions {«'} basis for Py:

i 1 i ' 1 i 1
2 (ML) = M (0", 0)] + Fo(u™h 0) = Q™ ) = 0

= Unstructured and skewed cell geometries
— Impractical to construct orthonormal basis functions
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Discontinuous Galerkin discretization (dG)

= dG(k): Choose basis functions {«'} basis for Py:

A ML) — ML (", )] + FLu™ 0) — QL (u™, 1) =0
Unstructured and skewed cell geometries
— Impractical to construct orthonormal basis functions

= Pragmatic solution: tensor products of Legendre
polynomials on bounding box

W) = {f) (a5s) & (&575) & (572) :Zg

Simple "limiter” strategy: reduce to dG(0)

e if values outside physical range
e if jump across cell interfaces > ¢




Discontinuous Galerkin discretization (dG)

= How to evaluate integrals over irregular cell geometries?
— Cubature rules by moment fitting

Uil&) - viEm)] [w

| [faviav

) . o . Q :‘
Pn(&) - Ya(Em)] (W & Jowh dv
———
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Discontinuous Galerkin discretization (dG)

= How to evaluate integrals over irregular cell geometries?
— Cubature rules by moment fitting

Pi&) o DiEm)] [w . Jqviav

(&) o Uh(m)] W & qupLdv

Known
cubature

Moment
fitting




Autmatic differentiation

= Linearize and neglect higher-order terms — Newton-Raphson method:

Ut =u +Au, —JAU=R

Jacobian :
= ]j ~—(Residual)

= Calculation of Jacobian J: involved and error-prone process — automatic differentiation

e Facilitates implementation of higher-order schemes and nonlinear interpolations

Automatic differentiation: evaluation of residuals consist of a nested sequence of elementary binary operations and unary
operations. Expand each variable with data elements representing derivatives wrt. all primary variables. Combine chain rule and
elementary differentiation rules to analytically evaluate all derivatives. All you have to do is code the residual evaluation, and
then Jacobians are computed simultaneously by operator overloading.
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Example 2: subset of SPE 10 Model 2

(g | | | | y-dG(O‘) <% | | | | '-dG(lv) 1

N\
|
J

Layer 70 of SPE10 Model 2

Fluvial sandstone channels on mud-
stone background

(g | | | | ‘-WEN‘O 1

Quadratic relperms, slightly compress-
° ible fluids

Injection of water over 2000 days

10/17



ple 2: subset of SPE 10 Model

e

s
m
Z ||
(@)
N -

Layer 70 of SPE10 Model 2

Fluvial sandstone channels on mud-
stone background

Quadratic relperms, slightly compress-
ible fluids

Injection of water over 2000 days

Exam 2

10/17



G [e

Example 2: subset of SPE 10 Model 2

Layer 70 of SPE10 Model 2

Fluvial sandstone channels on mud-
stone background

Quadratic relperms, slightly compress-
ible fluids

Injection of water over 2000 days

10/17



Example 2: subset of SPE 10 Model 2
' " W7 = ' ’;," )y S

Layer 70 of SPE10 Model 2

Fluvial sandstone channels on mud-
stone background

Quadratic relperms, slightly compress-
ible fluids

Injection of water over 2000 days

10/17



Example 2: subset of SPE10 Model 2
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Subset of SAIGUP realization

9000

I L 1
0.01 0.1 1.01 10.13 101.32 1013.25

= Shallow-marine oil reservoir, modeled in the SAIGUP study!

» Spans lateral area of ~ 9 x 3 km?, 40 x 120 x 20 corner-point grid, several major faults

IManzocchi et al., 2008
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= Skewed and irregular cell geometries with complex topology — up to 20 neighbors

=2.6 x 10*

= Extreme aspect ratios — larges to smalles face area
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Subset of SAIGUP realization

[ Centroid outside cell ]

= WENO stencil robustness:

o |ocal affine transformation
e use only one cell in each logical direction, chosen based on inteface area

= dG: bounding box basis functions greatly simplifies implementation

13/17



Example 2: Subset of SAIGUP realization

\

\ \ g
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. = Extract three top layers
‘i;,..'\”'t.\u_‘_\;‘\& = Pressure drop from west to east
W ""'“":“i\ = Equal viscosities, linear relperms
= Higher-order methods: visibly sharper
and less diffusive profiles
L )
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Example 2: Subset of SAIGUP realization

Extract three top layers

Pressure drop from west to east

Equal viscosities, linear relperms

Higher-order methods: visibly sharper
and less diffusive profiles

14 /17



Closing remarks

= Implementation complexity
WENO | Finite volume scheme — eas(y/ier) to build on existing simulator
dG | Requires heavy numerical machinery (basis functions, cubature rules, grid geometry ...)

= Computational complexity
WENO | Same number of unknowns (one per cell per phase/component), but denser stencil
dG | Large number of unknowns: (ktd), observed slover nonlinear convergence

INatvig and Lie, 2008  2Klemetsdal et al., 2018
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WENO | Finite volume scheme — eas(y/ier) to build on existing simulator
dG | Requires heavy numerical machinery (basis functions, cubature rules, grid geometry ...)

= Computational complexity
WENO | Same number of unknowns (one per cell per phase/component), but denser stencil

dG | Large number of unknowns: (ktd), observed slover nonlinear convergence

= But: dG stencil restriced to the cell and its upstream neighbors

e Reorder grid cells based on intercell flux graph
— transport subproblem can be solved cell-by-cell in topological order!»?

INatvig and Lie, 2008  2Klemetsdal et al., 2018
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Nonlinear solver with optimal reordering
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Nonlinear solver with optimal reordering
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Nonlinear solver with optimal reordering

Large portion of cells already converged]\
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our +u, =0 4[Transformation 7= q&x]—) ur +u,=20
H'BBnnBnnn HIEEEEEEN
'd )
Modified equation (implicit/explicit first order) g: + g = %(AT + At)g--
— smearing of discontinuity across a width O(/t(AT & At))
Scheme with CFL number v (i.e., At = v2~) gives overall smearing

9 1 /Ax¢ _ 9Ax v
S (Bxp At + o (SR £ Ar) = X (12 ) +

high-porosity region low-porosity region

Ax
10M2

(1:|:1/)
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