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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Unique prototyping platform:

Standard data formats

Data structures/library routines

Fully unstructured grids

Rapid prototyping:

– Differentiation operators
– Automatic differentiation
– Object-oriented framework
– State functions

Industry-standard simulation

http://www.mrst.no



MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Large international user base:

downloads from the whole world

124 master theses

56 PhD theses

226 journal papers (not by us)

144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry Google Analytics: access pattern for www.mrst.no

Period: 1 July 2018 to 31 December 2019

Unique downloads: 5 516 (103 countries and 838 cities)



MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on

reservoir modelling

Large international user base:

downloads from the whole world

124 master theses

56 PhD theses

226 journal papers (not by us)

144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry

Word cloud generated from titles of journal papers



Reservoir simulation in MATLAB...? 3 / 19

Use abstractions to express your ideas in a form close to the underlying mathematics

Build your program using an interactive environment:

– try out each operation and build program as you go
– extensive and flexible debugging capabilities

Dynamic type checking lets you prototype while you test an existing program:

– run code line by line, inspect and change variables at any point
– step back and rerun parts of code with changed parameters
– add new behavior and data members while executing program

MATLAB is fairly efficient using vectorization, logical indexing, external iterative solvers, etc.

Avoids build process, linking libraries, cross-platform problems

Builtin mathematical abstractions, numerics, data analysis, visualization, debugging/profiling,

Use scripting language as a wrapper when you develop solvers in compiled languages

We considered Python, but found it to be less mature (same with Julia a few years ago)



Complex, unstructured grids 4 / 19

Corner-point grids (the most widespread format in industry):

Low permeability

Thin cells

Internal gap

Non-matching faces

Twisted grid

Many neighbors Degenerate cells

Many special cases and tricks to be (re)invented



Complex, unstructured grids 5 / 19

A wide variety of grid formats:

Tetrahedral, prismatic

PEBI

General polyhedral/polytopal

Hybrid, cut-cell, or depogrids

Local refinements . . .

MRST grids are chosen to always be
fully unstructured
−→ can implement algorithms without
knowing the specifics of the grid

Also: coarse grids made as static or
dynamic partitions of fine grid



Discrete differentiation operators 6 / 19

Grid structure in MRST
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For finite volumes, the discrete div operator is a linear mapping from faces to cells:

div(v)[c] =
∑

f∈F (c)

sgn(f)v[f ], sgn(f) =

{
1, if c = C1(f),

−1, if c = C2(f).

Here, v[f ] denotes a discrete flux over face f with orientation from cell C1(f) to cell C2(f)
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The discrete grad operator maps from cell pair C1(f), C2(f) to face f :

grad(p)[f ] = p[C2(f)]− p[C1(f)],

where p[c] is a scalar quantity associated with cell c

Both are linear operators and can be represented as sparse matrix multiplications



Close correspondence with mathematics 7 / 19

Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Discretization of flow models leads to large systems of nonlinear equations. Can be
linearized and solved with Newton’s method

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)
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Close correspondence with mathematics 8 / 19

Coding necessary Jacobians is time-consuming and error prone

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)

Automatic differentiation: Combine chain rule and elementary differentiation rules by
means of operator overloading to efficiently evaluate all derivatives to machine precision

→ Computing Jacobians amounts to writing down residual equations.



Example: compressible two-phase flow 9 / 19

(φSαρα)n+1 − (φSαρα)n

∆tn
+ div(ρv)n+1

α = (ρq)n+1
α

Residual equations are computed as for single-phase flow‡

water = (1/dt).*(vol.*rW.*sW - vol0.*rW0.*sW0) + div(vW);

oil = (1/dt).*(vol.*rO.*(1-sW) - vol0.*rO0.*(1-sW0)) + div(vO);

eqs = {oil, water};

eq = cat(eqs{:});

∂W
∂p

∂O
∂p

∂W
∂Sw

∂O
∂Sw

Darcy’s law:
upstream operator is a combination of

vector product and logical indexing

‡



The AD-OO simulator framework 10 / 19

In sum: excellent approach for fast prototyping of simple simulators

However, things soon start piling up
complex rock-fluid/PVT models + hysteretic behavior

advanced well models and simulation schedules

time-step control, iteration control, line search, preconditioning, iterative solvers, . . .

Hence, code will eventually start to become complicated

Cure: the object-oriented AD-OO framework to separate:
physical models

discretizations and discrete operators

nonlinear solver and time-stepping

assembly and solution of the linear system

Only expose needed details and increase reuse of developed functionality
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Simulator: differentiable graph 11 / 19
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Flow relations

pw
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S

state

1) Define continuous residual equations
ri =

∂mi

∂t +∇ · ~v − qi = 0

2) Create simulator graph to discretize equations
1

∆t

(
Mi

n+1+ Mi
n

)
+∇· Vi − QiRi =

Simulator graph
3) Differentiate discrete residual with AD and solve:
Jij =

∂Ri

∂vj
, xk+1 = xk − J−1R, . . .

4) Post: Make decisions, compute sensitivites, …

Graph of functions for multiphysics problems

Simulation on graphs Easy to modify, extend and understand

Smart automatic differentiation for high performance



State functions: modularity and computational cache 12 / 19

Similar quantities appear in multiple flow models, but can
have different functional relationships

It would be convenient to have:

Dependency management: keep track of dependency
graph, ensure all input quantities have been evaluated
before evaluating a function

Generic interfaces: avoid defining functional
dependencies explicitly, e.g., G(S), and G(p, S).

Lazy evaluation with caching

Enable spatial dependence in parameters while
preserving vectorization potential

Implementation independent of the choice of primary
variables

State function: any function that is
uniquely determined by the contents of
the state struct alone

Implemented as class objects, gathered
in functional groups
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Worked example: CO2 injection with mobility control 13 / 19

1
∆t(M

n+1
α −Mn

α) + div(V α)−Qα = 0, α = w, g

V g = −ρgλgKgrad(pg), λg =
kr,g
µg

Mobility control: increase mobility of
injected gas by adding surfactant
→ foam formation

Modelled through mobility multiplier F 1

→ we only have to change the relevant
part (Mobility) in the simulator graph

Dependencies on other properties are
defined in the implementation
→ evaluated in the correct order, and
only once per nonlinear iteration
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What about computational performance? 14 / 19

Total time of a program consists of several parts:

programming + debugging

+ documenting + testing + executing

MRST is designed to prioritize the first four over the last

Does this mean that MRST is slow and not scalable?

No, I would say its is surprisingly efficient

Potential concerns:

MATLAB is interpreted

cure: JIT, vectorization, logical indexing,

pre-allocation, highly-efficient libraries

Redundant computations

cure: state functions = dependency

graph + computational cache

Computational overhead

cure: new auto diff backends

Scalability/performance

cure: external high-end iterative solvers
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New backends for automatic differentiation 15 / 19

1 104 1 105 1 106 2 106

Number of cells

10-2

100

102

A
s
s
e
m

b
ly

 t
im

e
 [
s
]

single-phase

3ph, immiscible

3ph, blackoil

6c, compositional

0.5 s / million cells

50 s / million cells

overhead dominates

New AD backends: storage optimized wrt access pattern, MEX-accelerated operations



Efficient linear solvers 16 / 19

Interface to external linear algebra packages implemented as classes in AD-OO framework

Example: compressible three-phase, black-oil problem

Solver Req. 8,000 cells 125,000 cells 421,875 cells 1,000,000 cells

LU – 2.49 s 576.58 s – –

CPR∗ – 0.90 s 137.30 s – –

CPR∗ AGMG 0.18 s 3.60 s 13.78 s 43.39 s

CPR∗ AMGCL 0.21 s 3.44 s 16.20 s 51.35 s

CPR AMGCL 0.07 s 0.43 s 3.38 s 10.20 s

CPR AMGCL† 0.05 s 0.86 s 1.97 s 5.60 s

CPR AMGCL‡ 0.05 s 0.38 s 1.33 s 3.82 s

∗ – in MATLAB, † – block AMGCL (block ILU + AMG/CPR), ‡ – block AMGCL with tweaks

Performance is approaching commercial and compiled academic codes



New book: Advanced modelling with MRST 17 / 19

Berge et al.: Constrained Voronoi grids Al Kobaisi & Zhang: nonlinear FVM Lie & Møyner: multiscale methods

Wong et al.: embedded discrete fractures Olorode et al.; fractured unconventionals March et al.: unified framework, fractures

Varela et al.: unsaturated poroelasticity Collignon et al.: geothermal systems Andersen: coupled flow & geomechanics

Møyner: compositional

Sun et al.: chemical EOR

Møyner: state functions, AD backends

Klemetsdal & Lie: discontinuous Galerkin



Useful resources 18 / 19

MRST Textbook
Knut-Andreas Lie. An Introduction to Reservoir Simulation
Using Matlab/GNU octave. Cambridge University Press,
2019 (Open access). DOI: 10.1017/9781108591416

Download, documentation, tutorials and more
MRST website: mrst.no

Repositories: bitbucket.org/mrst/mrst-core/wiki

Tutorial lectures (including full-length version of this talk)
mrst.no/documentation/tutorial-lectures/

https://doi.org/10.1017/9781108591416
www.mrst.no
https://bitbucket.org/mrst/mrst-core/wiki/Home
https://www.sintef.no/projectweb/mrst/documentation/tutorial-lectures/
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