How to use recent developments of the MATLAB
Reservoir Simulation Toolbox for fast prototyping of
complex fluid models

@ystein S. Klemetsdal, Olav Mgyner, Halvor Mgll Nilsen, Knut-Andreas Lie
SINTEF Digital, Oslo, Norway

NCCS Webinar Series, October 6, 2020

MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on
reservoir modelling

Unique prototyping platform:
= Standard data formats
= Data structures/library routines
= Fully unstructured grids
= Rapid prototyping:

Differentiation operators
Automatic differentiation
Object-oriented framework
State functions

= Industry-standard simulation

http://www.mrst.no

MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on
reservoir modelling

Large international user base:
= downloads from the whole world
= 124 master theses
= 56 PhD theses
= 226 journal papers (not by us)
= 144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry

v 4

I 632

Google Analytics: access pattern for www.mrst.no
Period: 1 July 2018 to 31 December 2019
Unique downloads: 5 516 (103 countries and 838 cities)

MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on
reservoir modelling

Large international user base:

downloads from the whole world

124 master theses
56 PhD theses
226 journal papers (not by us)

144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry

Word cloud generated from titles of journal papers

Reservoir simulation in MATLAB...? 3/19

= Use abstractions to express your ideas in a form close to the underlying mathematics
= Build your program using an interactive environment:

— try out each operation and build program as you go

— extensive and flexible debugging capabilities
= Dynamic type checking lets you prototype while you test an existing program:

— run code line by line, inspect and change variables at any point
— step back and rerun parts of code with changed parameters
— add new behavior and data members while executing program

MATLAB is fairly efficient using vectorization, logical indexing, external iterative solvers, etc.

Avoids build process, linking libraries, cross-platform problems

Builtin mathematical abstractions, numerics, data analysis, visualization, debugging/profiling,
m Use scripting language as a wrapper when you develop solvers in compiled languages

® \We considered Python, but found it to be less mature (same with Julia a few years ago)

4/19

Complex, unstructured grids

Corner-point grids (the most widespread format in industry):

Degenerate cells

Many neighbors

Many special cases and tricks to be (re)invented

Complex, unstructured grids

5/19

A wide variety of grid formats:

Tetrahedral, prismatic
PEBI
General polyhedral/polytopal

Hybrid, cut-cell, or depogrids

Local refinements . ..

MRST grids are chosen to always be
fully unstructured

— can implement algorithms without
knowing the specifics of the grid

Also: coarse grids made as static or
dynamic partitions of fine grid

Discrete differentiation operators 6/19

(1dealized models] ~ [Grid structure in MRST] [Industry models]
S \ ¢ F(c) C G Z)
1 1 3 1
1 2 1 2
1 3 1 8
1 1 9 1
2 5 4 2
2 6 2 5
2 7 2 [
2 8 2 7
2 2 :
301
Map: cell - faces Map: face — cells 'l ‘

Discrete differentiation operators 6/19

Idealized models _[Grid structure in MRST)] Industry models
9. ! e =2
RISy e, 4) 3 =
A Tege- (] G G 7 I
' v 11 31
| 1 2 1 2 ~/
1 3 18 K /
14 9 1 '
2 5 12 S
26 2 5 7
2 7 2 6 i)\
2 8 2 7 2
2 2 R >
31 P \ /
Map: cell — faces Map: face — cells g

For finite volumes, the discrete div operator is a linear mapping from faces to cells:

1, If CcC = Cl(f),

div(v)[d = > sgn(f)v[f], Sgn(f):{_1 if ¢ = Ca(f).

feF(c)

Here, v[f] denotes a discrete flux over face f with orientation from cell Cy(f) to cell Ca(f)

Discrete differentiation operators

6/19

[1dealized models _[Grid structure in MRST)]

¢ Fle) [
1 1 3 1
1 2 1 2
1 3 1 8
1 1 9 1
2 5 4 2
26 2 5
2 7 2 6
2 8 2 7
2 2 : :
301 :
Map: cell - faces Map: face — cells

Industry models

| i

#

&

il
>

The discrete grad operator maps from cell pair C1(f), C2(f) to face f:

grad(p)[f] = p[Ca(f)] — p[C1(f)],

where plc] is a scalar quantity associated with cell ¢

Both are linear operators and can be represented as sparse matrix multiplications

Close correspondence with mathematics

7/19

Continuous

Incompressible flow:
V- (KVp)+qg=0
Compressible flow:

@Jrv-(pKVp)qu:O

[Discrete in MATLAB |

Incompressible flow:
eq = div(T .* grad(p)) + q;
Compressible flow:

eq = (pv(p).*rho(p)-pv(p0).*rho(p0))/dt
+ div(avg(rho(p)).*T.*grad(p))+q;

Close correspondence with mathematics

7/19

Continuous [Discrete in MATLAB |
Incompressible flow: Incompressible flow:

V- (KVp)+q¢=0 eq = div(T .* grad(p)) + q;

Compressible flow: Compressible flow:

—— + V- (pKVp)+¢g=0 eq = (pv(p).*rho(p)-pv(p0).*rho(p0))/dt

9(¢p)
ot + div(avg(rho(p)).*T.xgrad(p))+q;

Discretization of flow models leads to large systems of nonlinear equations. Can be
linearized and solved with Newton's method

OF

F(u)=0 u

(ui)(ui+1 o uz) _ —F(ul)

Close correspondence with mathematics

8/19

Coding necessary Jacobians is time-consuming and error prone

oOF

F(u)=0 5o

ui)(ui+1 _ ,uz) — _F(uz)

Automatic differentiation: Combine chain rule and elementary differentiation rules by
means of operator overloading to efficiently evaluate all derivatives to machine precision
— Computing Jacobians amounts to writing down residual equations.

Example: compressible two-phase flow

9/19

(#Sap,)" " — (9Sap,)"
Atn

+div(pv)a ™ = (pg)a ™

[e%

Residual equations are computed as for single-phase flow!

water = (1/dt) .*(vol.*rW.xsW — volO.*rWO.*sW0) + div(vW);
oil (1/dt) .*(vol.xr0.*x(1-sW) - vol0.*r00.*(1-sW0)) + div(v0);
egs {oil, water};

eq = cat(egs{:}); w \
AN

1 Darcy’s law:
upstream operator is a combination of
vector product and logical indexing

The AD-OO simulator framework 1019

In sum: excellent approach for fast prototyping of simple simulators

The AD-OO simulator framework e

In sum: excellent approach for fast prototyping of simple simulators

However, things soon start piling up
= complex rock-fluid/PVT models + hysteretic behavior
= advanced well models and simulation schedules

= time-step control, iteration control, line search, preconditioning, iterative solvers, ...

Hence, code will eventually start to become complicated

The AD-OO simulator framework e

In sum: excellent approach for fast prototyping of simple simulators

However, things soon start piling up
= complex rock-fluid/PVT models + hysteretic behavior
= advanced well models and simulation schedules

= time-step control, iteration control, line search, preconditioning, iterative solvers, ...

Hence, code will eventually start to become complicated

Cure: the object-oriented AD-OO framework to separate:
= physical models
= discretizations and discrete operators
= nonlinear solver and time-stepping

= assembly and solution of the linear system

Only expose needed details and increase reuse of developed functionality

Simulator: differentiable graph 1/19

1) Define continuous residual equations 2) Create simulator graph to discretize equations

ri:agzi+v<ﬁfq,-:0 j (@"+1+@ >+V @ .\

3) Differentiate discrete residual with AD and solve:
Jig =98 gkt =gk — J7IR .

Simulator graph

(PvT

4) Post: Make decisions, compute sensitivites, ...

Graph of functions for multiphysics problems
Simulation on graphs | Easy to modify, extend and understand
Smart automatic differentiation for high performance

State functions: modularity and computational cache

12/19

Similar quantities appear in multiple flow models, but can
have different functional relationships

It would be convenient to have:

Dependency management: keep track of dependency
graph, ensure all input quantities have been evaluated
before evaluating a function

Generic interfaces: avoid defining functional
dependencies explicitly, e.g., G(S), and G(p, S).

Lazy evaluation with caching

Enable spatial dependence in parameters while
preserving vectorization potential

Implementation independent of the choice of primary
variables

State functions: modularity and computational cache 12/19

Similar quantities appear in multiple flow models, but can
have different functional relationships

It would be convenient to have:

Dependency management: keep track of dependency
graph, ensure all input quantities have been evaluated
before evaluating a function

Generic interfaces: avoid defining functional
dependencies explicitly, e.g., G(S), and G(p, S).

Lazy evaluation with caching
Enable spatial dependence in parameters while
preserving vectorization potential

Implementation independent of the choice of primary
variables

State function: any function that is
uniquely determined by the contents of
the state struct alone

Implemented as class objects, gathered
in functional groups

State functions: modularity and computational cache 12/19

Similar quantities appear in multiple flow models, but can
have different functional relationships

It would be convenient to have:

Dependency management: keep track of dependency
graph, ensure all input quantities have been evaluated
before evaluating a function

Generic interfaces: avoid defining functional
dependencies explicitly, e.g., G(5), and G(p, 5).

Lazy evaluation with caching

Enable spatial dependence in parameters while
preserving vectorization potential

Implementation independent of the choice of primary
variables

State function: any function that is
uniquely determined by the contents of
the state struct alone

Implemented as class objects, gathered
in functional groups

G(x,y,a, b) = xy + ab

©0 o0

group ;

Worked example: CO, injection with mobility control 13/19

ﬁ(MZ’H —M})+div(V,) - Q, =0, a=w,g

Vg = _pgAgKgrad(pg)a)‘9 =

13/19

Worked example: CO, injection with mobility control

ﬁ(MZH - M!)+div(V,)—-Q, =0, a=w,g
k,

Vg = _pgAgKgrad(pg)a)‘9 = /J;g

g

Worked example: CO, injection with mobility control 13/19

ﬁ(M:iH - M) +4div(V,)—Q, =0, a=uw,g

k.
Vg =—pAKgrad(p,), Ag=F(5y.¢c) 'ugg Mobility control: increase mobility of
injected gas by adding surfactant
— foam formation
Modelled through mobility multiplier F'!
o, — we only have to change the relevant
o part (Mobility) in the simulator graph

LGrimstad et al (2018)

Worked example: COs injection with mobility control 13/19

E(MZJrl - M7y)+4div(V,) —Q, =0, a=uw,g

k,
Vg = _pgAgKgrad(pg)a)‘9 = F(S!I?C)J

Iy Mobility control: increase mobility of
injected gas by adding surfactant
Standard mobility — foam formation
state PVT Flow ‘ Modelled through mobility multiplier F'!

PhasePressures RelativePermeability — we On|y have to Change the relevant
’ v part (Mobility) in the simulator graph

classdef MultipliedMobility < StateFunction
function mob = evaluateOnDomain(prop, model, state)
kr = prop.getEvaluatedDependencies(state, 'RelativePermeability');
mu = model.getProp(state, 'Viscosity');
mob = cellfun(@(x, y) x./y, kr, mu, 'UniformOutput', false);

end

— LGrimstad et al (2018)

Worked example: COs injection with mobility control 13/19

E(MZH - M7y)+4div(V,) —Q, =0, a=uw,g

«
Erg
Vo =—pAKegrad(py), Ag=1F(Syc) Ky Mobility control: increase mobility of
injected gas by adding surfactant
MObiIity with foam multiplier — foam formation
‘state [Flow Modelled through mobility multiplier £
PVT (MobilityMultiplier) — we only have to change the relevant

PhasePressures 14

RelativePermeability

part (Mobility) in the simulator graph

classdef MultipliedMobility < Mobility
function mob = evaluateOnDomain(prop, model, state)
mob = evaluateOnDomain@obility(prop, model, state);

F = prop.getEvaluatedDependencies(state, 'MobilityMultiplier');

mob{is_gas} = F.*mob{is_gas}; 1Grimstad et al (2018)

end
end

Worked example: COs injection with mobility control 13/19

ﬁ(MgH - M7y)+4div(V,) —Q, =0, a=uw,g
k,

V.‘] = _pgAgKgrad(pg)a)‘9 = F(ch)f

g

Mobility with foam multiplier

Flow

-+ (MobilityMultiplier

4
Mobility

state

==

PhasePressures

Vlsc051ty

+(RelativePermeability

classdef MultipliedMobility < Mobility
function mob = evaluateOnDomain(prop, model, state)
mob = evaluateOnDomain@obility(prop, model, state);
F = prop.getEvaluatedDependencies(state, 'MobilityMultiplier');
mob{is_gas} = F.*mob{is_gas};
end
end

Mobility control: increase mobility of
injected gas by adding surfactant
— foam formation

Modelled through mobility multiplier F'!
— we only have to change the relevant
part (Mobility) in the simulator graph

Dependencies on other properties are
defined in the implementation

— evaluated in the correct order, and
only once per nonlinear iteration

1Grimstad et al (2018)

What about computational performance?

14 /19

Total time of a program consists of several parts:

programming + debugging
+ documenting + testing + executing

MRST is designed to prioritize the first four over the last

Does this mean that MRST is slow and not scalable?

What about computational performance? 14/19

Potential concerns:

Total time of a program consists of several parts:
= MATLAB is interpreted

programming -+ d.ebugging)) cure: JIT, vectorization, logical indexing,
+ documenting + testing + executing pre-allocation, highly-efficient libraries
MRST is designed to prioritize the first four over the last = Redundant computations

cure: state functions = dependency

Does this mean that MRST is slow and not scalable? graph + computational cache

. . . = Computational overhead
No, | would say its is surprisingly efficient cure: new auto diff backends

® Scalability /performance
cure: external high-end iterative solvers

New backends for automatic differentiation Vs

—@— single-phase
—®— 3ph, immiscible
3ph, blackoil
—®— 6¢, compositional
— — — 0.5 s/ million cells
— — —50 s/ million cells

102

—_

—_

Assembly time [s]
2

n n n n PR | n n n n n PR | |
1x10% 1x10° 1x10% 2x108
Number of cells

k— overhead dominates —i

New AD backends: storage optimized wrt access pattern, MEX-accelerated operations

Efficient linear solvers .

Interface to external linear algebra packages implemented as classes in AD-OO framework

Example: compressible three-phase, black-oil problem

Solver Req. 8,000 cells 125,000 cells 421,875 cells 1,000,000 cells
LU - 249 s 576.58 s - -
CPR* - 0.90 s 137.30 s — =
CPR* AGMG 0.18 s 3.60s 13.78 s 43.39 s
CPR* AMGCL 021s 344 s 16.20 s 51.35s
CPR AMGCL 0.07 s 0.43 s 3.38s 10.20 s
CPR AMGCLT 0.05s 0.86 s 1.97 s 5.60 s
CPR AMGCL? 0.05 s 0.38 s 1.33s 3.82s

* —in MATLAB, 1 — block AMGCL (block ILU + AMG/CPR), 1 — block AMGCL with tweaks

Performance is approaching commercial and compiled academic codes

New book: Advanced modelling with MRST

17 /19

I\‘é}i\‘ il
U o
ST oos
iR

PEESRLY

b
M
ol
5!
T

P —

Berge et al.:

Lie & Mgyner: multiscale methods

Domains Comnections

DFMvitualcels oot

e
fracture

1Blul s

Wong et al.:

March et al.: unified framework, fractures

Klemetsdal & Lie: discontinuous Galerkin

Mgyner: state functions, AD backends

Sun et al.: chemical EOR

Mgyner: compositional

Varela et al.: unsaturated poroelasticity

Collignon et al.: geothermal systems

Andersen: coupled flow & geomechanics

Useful resources

18

19

MRST Textbook

Knut-Andreas Lie. An Introduction to Reservoir Simulation
Using Matlab/GNU octave. Cambridge University Press,
2019 (Open access). DOI: 10.1017/9781108591416

Download, documentation, tutorials and more
MRST website: mrst.no
Repositories: bitbucket.org/mrst/mrst-core/wiki

Tutorial lectures (including full-length version of this talk)
mrst.no/documentation/tutorial-lectures/

An Introduction to
Reservoir Simulation
Using MATLAB/GNU
Octave

User Guide for the MATLAB
Reservoir Simulation Toolbox (MRST)

..Im!l!!!ll

Knut-Andreas Lie

https://doi.org/10.1017/9781108591416
www.mrst.no
https://bitbucket.org/mrst/mrst-core/wiki/Home
https://www.sintef.no/projectweb/mrst/documentation/tutorial-lectures/

Acknowledgements 19/19

Thanks to all co-developers at SINTEF, our master and PhD Funding:
students, and our national and international collaborators = Research Council of Norway
= SINTEF

Thanks also to all MRST users who have asked interesting
questions that have helped us shape the software = Equinor: gold open access for the
MRST textbook

= Chevron, Ecopetrol, Eni, Equinor,
ExxonMobil, Shell, SLB, Total,
Wintershall DEA, ...

