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Introduction

® Hot underground aquifers are appealing resources for energy production and storage
Renewable v Always on v Available anywhere v/

= Viability depends a number of factors (Glassley [2010], Stober and Bucher [2013])
Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

= Assessment requires solid system knowledge (Andersson [2007])
Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...
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= Assessment requires solid system knowledge (Andersson [2007])
Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...

0.953.5em Complexity and size typically renders numerical simulations the only viable option
(O’Sullivan et al. [2000], Lee [2010], Stober and Bucher [2013])
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® Transport of geothermal heat chiefly confined to proximity of wells

Difficult to determine appropriate grid resolution apriori

= Many geomodels not suitable for conventional grid refinement methods

Reservoir engineering applications:

# cells in simulation grid < # cells in geocellular model

State-of-the-art multiscale methods (attempt to) bridge gap for pressure problems
[Jenny et al., 2006, Mgyner and Lie, 2016, Lie et al., 2017], etc.

Here: attempt to bridge this gap for transport problems by dynamic coarsening
Implementation in the MATLAB Reservoir Simulation Toolbox (MRST)



Governing equations and discretization

m Single-phase conservation of mass on semi-discrete, implicit form

R’?-i-l: 1 (M?+1—M;‘7)+V'\7?+1—Qf=0

At"
Sources/sinks

Mass flux from Darcy's law: V; = —LLK(Vp = prE)

0
]



Governing equations and discretization

m Conservation of energy on semi-discrete, implicit form
RIT = Lo ([Mrup + Myu )"t — [Mfuf + Mu,]") + V- (Vehe + H)™ — Qeh™t =0

w Advective heat qux &[Conductive heat quxJ

Heat flux from Fourier's law: H = —(Ar+N)VT
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m Conservation of energy on semi-discrete, implicit form
RIT = Lo ([Mrup + Myu )"t — [Mfuf + Mu,]") + V- (Vehe + H)™ — Qeh™t =0

w Advective heat qux &[Conductive heat quxJ

Heat flux from Fourier's law: H = —(Ar+N)VT

® Finite-volume + implicit timestepping — stable over wide range of parameters

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

X = x* 4 Ax, — %8 Ax = R(x*)




Governing equations and discretization

Sequential implicit formulation
1. Form pressure equation as weighted sum of R¢ and R,

O(wrMPt) N O (we[Mrus + M, u,]")

EW e =0, v/ # pressure

Rp = WfRf + WeRea

2. Solve R, = 0 with fixed temperature and transport variables
— pressure + intercell fluxes

3. Solve Rs =0 and R, = 0 with fixed pressure and intercell fluxes
— temperature + transport



Governing equations and discretization

Sequential implicit formulation
1. Form pressure equation as weighted sum of R¢ and R,

O(wrMPt) N O (we[Mrus + M, u,]")

EW EW =0, v/ # pressure

Rp = WfRf + WeRea

2. Solve R, = 0 with fixed temperature and transport variables
— pressure + intercell fluxes

3. Solve Rs =0 and R, = 0 with fixed pressure and intercell fluxes
— temperature + transport

Transport formulation: solve for temperature T and total saturation S;
— allow total saturation to be # 1, multiply mass and fluxes by total saturation

Me — SeMerur,  pr — pe/St,  Aa = Stda




Dynamic coarsening — Coarse grids

Coarse grid

Fine grid Partition 7t

Hauge et al. [2012], Karimi-Fard and Durlofsky [2014], Jones et al. [2020], Klemetsdal and Lie [2020],
Klemetsdal et al. [2021]
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Dynamic coarsening — Constructing dynamic grids

—
Coarsen ' Refine

Keep track of which cells to refine/coarsen using coarsening indicator Z(u) € RY

Coarse block comprising fine-scale cells C
coarsen if Z; < e.for all i € C, refine if Z; > e, for any i € C

/ 24



Dynamic coarsening — Mapping quantities

Mapping should be energy conservative
|Q°|(Muf + Miu?) = 1(Meiur i + M juy )
iec
1. Pressure, Temperature, and total intercell fluxes

P ¢a|Qa| Z¢l i|pi ¢a|Qa| Z¢I|Q |T vi= Z Vmn

ieC ieC (m,n)€€

pore—volume—weighted pore—volume—weighted sum fine-scale fluxes
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Dynamic coarsening — Mapping quantities

Mapping should be energy conservative
|Q°|(Muf + Miu?) = 1(Meiur i + M juy )
iec
1. Pressure, Temperature, and total intercell fluxes

P e T g T = Y

ieC ieC (m,n)€€

pore—volume—weighted pore-volume-weighted sum fine-scale fluxes
2. Compute energy on adapted grid — |Q?|(M3ZuZ + M2u?)
3. Set total saturation equal to energy discrepancy

>ice 14[(Myjur i + M, jur i) accumulated energy from fine grid

S = =
‘ |Q2|(M2uZ + Mzu?) energy on adapted grid




Example: SPE10 Model 2

® Heat storage in two different layers of SPE10 Model 2
m Three one-year cycles of storage in center well with pressure support in corner wells

1. Load phase: 3 months of injection at 80 °C, bhp = 70 bar
2. Rest phase: 3 months with no driving forces

3. Unload phase: 3 months of extraction, bhp = 1500 bar

4. Rest phase: 3 months with no driving forces

m Three coarsening approaches

1. Static based on incompressible time-of-flight
2. Dynamic with residual-based indicator
3. Dynamic with temperature indicator



Example: SPE10 Model 2 — Tarbert Formation (layer 10)
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Example: SPE10 Model 2 — Tarbert Formation (layer 10)
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Example: SPE10 Model 2 — Tarbert Formation (layer 10)
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Example: SPE10 Model 2 — Tarbert Formation (layer 10)
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Example: SPE10 Model 2 — Tarbert Formation (layer 10)

Y

SOV

2o ¥
T ti*ﬂ;;&wvy

gavee

Temperature (C)

G s sttt
T T s e it S I
AL A D gatni,
~“+§¥ér 3 5G]

“l

+8.0

+6.0

+4.0

+2.0

-

T

s

s
Temperature error (C)

-a.0

6.0

8.0




Example: SPE10 Model 2 — Tarbert Formation (layer 10)

Dynamic grid relative cell count
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Example: SPE10 Model 2 — Tarbert Formation (layer 10)

Injection well output

= Fully implicit
mmm Sequential Implicit
O Static (TOF)
O Dynamic (res)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)

Dynamic (temp)
O

S

5‘
i

3
5 "#
RaLr

Temperature (C)

Temperature error (C)




Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 — Upper Ness Formation (layer 85)
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Example: SPE10 Model 2

m Very close match with fine-scale results for all indicators and coarsening strategies
Between 49% and 96% reduction in # transport problem dofs
m Point-wise large temperature differences

m Energy discrepancy correction ensures conservation of energy between scales



Example: Real(istic) Model

L
0.03 0.04 005 006 0.07 0.08 0.09 0.1 0.11 0.03 0.04

Porasity
Model of real geothermal storage site, provided by Ruden AS
Group of wells in the center inject at 73 °C over period of four months
Corner wells provide pressure support

Dynamic coarsening with residual-based indicator



Example: Real(istic) Model

Reservoir temperature
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Example: Real(istic) Model

Reservoir temperature
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Example: Real(istic) Model

Relative L, error and dynamic grid relative cell count
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Example: Real(istic) Model

Relative L, error and dynamic grid relative cell count

10° [ 1
Sequential implicit é
L, error Dynamic (res) E
108 I I I I I 1
T T T T T T
Relative cell count
0.1 -
0.05 [~ -
0 I I I I I I
0 20 40 60 80 100 120

Time (days)

Less than 10™3 maximum relative L error with at least 87% reduction in # transport problem dofs

/ 24



Concluding Remarks

Conclusions
= Highly flexible dynamic coarsening method for geothermal simulations in MRST
Sequential splitting of flow and transport/energy
Applicable to unstructured, polytopal grids
Energy discrepancy correction ensures conservation of energy
Capable of simulating low- to moderate enthalpy geothermal systems
®m Method demonstrated on two examples
Significant reduction in # dofs in the transport subproblem
Very good match with fine-scale solution



Concluding Remarks

Conclusions
= Highly flexible dynamic coarsening method for geothermal simulations in MRST
Sequential splitting of flow and transport/energy
Applicable to unstructured, polytopal grids
Energy discrepancy correction ensures conservation of energy
Capable of simulating low- to moderate enthalpy geothermal systems
®m Method demonstrated on two examples

Significant reduction in # dofs in the transport subproblem
Very good match with fine-scale solution

Further work
m Optimize implementation and investigate actual CPU speedup
m Test method for high-enthalpy systems (phase changes)
m Solve each subproblem at its appropriate timescale
Multiple transport steps for each pressure step
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