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Introduction

� Hot underground aquifers are appealing resources for energy production and storage

• Renewable 3 Always on 3 Available anywhere 3

� Viability depends a number of factors (Glassley [2010], Stober and Bucher [2013])

• Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

� Assessment requires solid system knowledge (Andersson [2007])

• Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...

0.953.5em Complexity and size typically renders numerical simulations the only viable option

(O’Sullivan et al. [2000], Lee [2010], Stober and Bucher [2013])
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Introduction

Motivation

� Transport of geothermal heat chiefly confined to proximity of wells

� Difficult to determine appropriate grid resolution apriori

� Many geomodels not suitable for conventional grid refinement methods

� Reservoir engineering applications:

# cells in simulation grid � # cells in geocellular model

� State-of-the-art multiscale methods (attempt to) bridge gap for pressure problems
[Jenny et al., 2006, Møyner and Lie, 2016, Lie et al., 2017], etc.

� Here: attempt to bridge this gap for transport problems by dynamic coarsening

• Implementation in the MATLAB Reservoir Simulation Toolbox (MRST)
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Governing equations and discretization

� Single-phase conservation of mass on semi-discrete, implicit form

Rn+1
f = 1

∆tn (Mn+1
f −Mn

f ) +∇ · ~V n+1
f − Q f = 0

• Mass flux from Darcy’s law: ~Vf = − ρf
µf

K(∇p − ρf ~g)

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

xk+1 = xk + ∆x , − ∂R
∂x

∆x = R(xk)

Mass Flux Sources/sinks
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Governing equations and discretization

� Conservation of energy on semi-discrete, implicit form

Rn+1
e = 1

∆tn ([Mf uf + Mrur ]
n+1 − [Mf uf + Mrur ]

n) +∇ · ( ~Vf hf + ~H)n+1 − Qf h
n+1
f = 0

• Heat flux from Fourier’s law: ~H = −(λf + λr )∇T

� Finite-volume + implicit timestepping → stable over wide range of parameters

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

xk+1 = xk + ∆x , − ∂R
∂x

∆x = R(xk)

Internal energy Advective heat flux Conductive heat flux

Enthalpy
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Governing equations and discretization

Sequential implicit formulation

1. Form pressure equation as weighted sum of Rf and Re

Rp = ωfRf + ωeRe ,
∂
(
ωfMn+1

f

)
∂v i

+
∂
(
ωe [Mf uf + Mrur ]

n+1
)

∂v i
= 0, v i 6= pressure

2. Solve Rp = 0 with fixed temperature and transport variables
→ pressure + intercell fluxes

3. Solve Rf = 0 and Re = 0 with fixed pressure and intercell fluxes
→ temperature + transport

Transport formulation: solve for temperature T and total saturation St

→ allow total saturation to be 6= 1, multiply mass and fluxes by total saturation

Mf → StMf uf , µf → µf /St , λα → Stλα
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Dynamic coarsening – Coarse grids
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Hauge et al. [2012], Karimi-Fard and Durlofsky [2014], Jones et al. [2020], Klemetsdal and Lie [2020],

Klemetsdal et al. [2021]
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Dynamic coarsening – Constructing dynamic grids

Timestep n Indicator Timestep n + 1Level 3

Level 2

Level 1

Level 3

Coarsen Refine

Keep track of which cells to refine/coarsen using coarsening indicator I(u) ∈ RN
+

Coarse block comprising fine-scale cells C

coarsen if Ii < εc for all i ∈ C, refine if Ii > εr for any i ∈ C
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Dynamic coarsening – Mapping quantities

Mapping should be energy conservative

|Ωa|(Ma
f u

a
f +Ma

r u
a
r ) =

∑
i∈C

|Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

1. Pressure, Temperature, and total intercell fluxes

pa =
1

φa|Ωa|
∑
i∈C

φi |Ωi |pi︸ ︷︷ ︸
pore-volume-weighted

T a =
1

φa|Ωa|
∑
i∈C

φi |Ωi |Ti︸ ︷︷ ︸
pore-volume-weighted

v a =
∑

(m,n)∈E

vmn︸ ︷︷ ︸
sum fine-scale fluxes

2. Compute energy on adapted grid → |Ωa|(Ma
f u

a
f +Ma

r u
a
r )

3. Set total saturation equal to energy discrepancy

St =

∑
i∈C |Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

|Ωa|(Ma
f u

a
f +Ma

r u
a
r )

=
accumulated energy from fine grid

energy on adapted grid

Ø.S. Klemetsdal Dynamic Coarsening for Efficient Simulation of Geothermal Energy Applications 8
/ 24



Dynamic coarsening – Mapping quantities

Mapping should be energy conservative

|Ωa|(Ma
f u

a
f +Ma

r u
a
r ) =

∑
i∈C

|Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

1. Pressure, Temperature, and total intercell fluxes

pa =
1

φa|Ωa|
∑
i∈C

φi |Ωi |pi︸ ︷︷ ︸
pore-volume-weighted

T a =
1

φa|Ωa|
∑
i∈C

φi |Ωi |Ti︸ ︷︷ ︸
pore-volume-weighted

v a =
∑

(m,n)∈E

vmn︸ ︷︷ ︸
sum fine-scale fluxes

2. Compute energy on adapted grid → |Ωa|(Ma
f u

a
f +Ma

r u
a
r )

3. Set total saturation equal to energy discrepancy

St =

∑
i∈C |Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

|Ωa|(Ma
f u

a
f +Ma

r u
a
r )

=
accumulated energy from fine grid

energy on adapted grid

Ø.S. Klemetsdal Dynamic Coarsening for Efficient Simulation of Geothermal Energy Applications 8
/ 24



Dynamic coarsening – Mapping quantities

Mapping should be energy conservative

|Ωa|(Ma
f u

a
f +Ma

r u
a
r ) =

∑
i∈C

|Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

1. Pressure, Temperature, and total intercell fluxes

pa =
1

φa|Ωa|
∑
i∈C

φi |Ωi |pi︸ ︷︷ ︸
pore-volume-weighted

T a =
1

φa|Ωa|
∑
i∈C

φi |Ωi |Ti︸ ︷︷ ︸
pore-volume-weighted

v a =
∑

(m,n)∈E

vmn︸ ︷︷ ︸
sum fine-scale fluxes

2. Compute energy on adapted grid → |Ωa|(Ma
f u

a
f +Ma

r u
a
r )

3. Set total saturation equal to energy discrepancy

St =

∑
i∈C |Ωj |(Mf ,iuf ,i +Mr ,iur ,i )

|Ωa|(Ma
f u

a
f +Ma

r u
a
r )

=
accumulated energy from fine grid

energy on adapted grid

Ø.S. Klemetsdal Dynamic Coarsening for Efficient Simulation of Geothermal Energy Applications 8
/ 24



Example: SPE10 Model 2

� Heat storage in two different layers of SPE10 Model 2

� Three one-year cycles of storage in center well with pressure support in corner wells

1. Load phase: 3 months of injection at 80 ◦C, bhp = 70 bar
2. Rest phase: 3 months with no driving forces
3. Unload phase: 3 months of extraction, bhp = 1500 bar
4. Rest phase: 3 months with no driving forces

� Three coarsening approaches

1. Static based on incompressible time-of-flight
2. Dynamic with residual-based indicator
3. Dynamic with temperature indicator
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Example: SPE10 Model 2 – Tarbert Formation (layer 10)
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Example: SPE10 Model 2 – Tarbert Formation (layer 10)

Dynamic grid relative cell count
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Dynamic (res)

Dynamic (temp)
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Example: SPE10 Model 2 – Tarbert Formation (layer 10)

Injection well output

50

60

70

80

Temperature (C)

Fully implicit

Sequential Implicit

Static (TOF)

Dynamic (res)

Dynamic (temp)

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

-100

0

100
Effect (MJ/day)
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Example: SPE10 Model 2 – Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 – Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 – Upper Ness Formation (layer 85)
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Example: SPE10 Model 2 – Upper Ness Formation (layer 85)
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Example: SPE10 Model 2

� Very close match with fine-scale results for all indicators and coarsening strategies

• Between 49% and 96% reduction in # transport problem dofs

� Point-wise large temperature differences

� Energy discrepancy correction ensures conservation of energy between scales

Ø.S. Klemetsdal Dynamic Coarsening for Efficient Simulation of Geothermal Energy Applications 18
/ 24



Example: Real(istic) Model

� Model of real geothermal storage site, provided by Ruden AS

� Group of wells in the center inject at 73 ◦C over period of four months

� Corner wells provide pressure support

� Dynamic coarsening with residual-based indicator
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Example: Real(istic) Model

Reservoir temperature
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Example: Real(istic) Model

Relative L2 error and dynamic grid relative cell count
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 error
Sequential implicit

Dynamic (res)
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Time (days)

0

0.05
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Relative cell count

Less than 10−3 maximum relative L2 error with at least 87% reduction in # transport problem dofs
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Concluding Remarks

Conclusions

� Highly flexible dynamic coarsening method for geothermal simulations in MRST

• Sequential splitting of flow and transport/energy
• Applicable to unstructured, polytopal grids
• Energy discrepancy correction ensures conservation of energy
• Capable of simulating low- to moderate enthalpy geothermal systems

� Method demonstrated on two examples

• Significant reduction in # dofs in the transport subproblem
• Very good match with fine-scale solution

Further work

� Optimize implementation and investigate actual CPU speedup

� Test method for high-enthalpy systems (phase changes)

� Solve each subproblem at its appropriate timescale

• Multiple transport steps for each pressure step
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