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Introduction

Uncertainty quantification in reservoir simulation

® Quantity of interest u typically derived from simulation results
Saturation at time t’, water production rate, total oil production, etc.
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Introduction

Uncertainty quantification in reservoir simulation

® Quantity of interest u typically derived from simulation results
Saturation at time t’, water production rate, total oil production, etc.
. which are all random variables due to uncertain subsurface properties
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Monte Carlo Method

u Let u be random variable with expected value E[u] and variance V[u]

= Approximate E[u] from independent, identically distributed samples u*,. .., uN

Elu] =~ E(u) = l Z ui, V[E(u)] =E |(E(v) —H*Z[E(u)])2 = lV[u]
N < N
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Monte Carlo Method

u Let u be random variable with expected value E[u] and variance V[u]

= Approximate E[u] from independent, identically distributed samples u*,. .., uN
1. 1
Elu] ~ E(u) = 5 > v, V[E(w)] = E |(E(s) ~ E[E(u)])?] = £ VId]

= Upsides: Easy to implement and easy to parallelize

= Downside: Root mean square error (RMSE) of the estimator is
RMSE = \/V[E(u)] = O(N~Y/?)
— Accuracy RMSE < ¢ requires N = O(£72) samples!
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Multilevel Monte Carlo Method (Giles [2015])

= Premise: we can obtain less expensive approximation uy_1 of up for u1,...,u = u

m Express expected value as telescopic sum (with ug = 0)

L
Elu] = Z]E[u@ — up—1]
=1

® ... with unbiased estimator
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Multilevel Monte Carlo Method (Giles [2015])

= Premise: we can obtain less expensive approximation uy_1 of up for uy,.

U =u

m Express expected value as telescopic sum (with ug = 0)

® ... with unbiased estimator

e Quantities u(“)

)

and u

(

)

l,

)
1

L
Elu] = Z]E[u@ — up—1]
=1

from the same random sample /, different for each ¢
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Multilevel Monte Carlo Method (Giles [2015])

= Total cost C (e.g., CPU time) and total variance V:

L L Vi
c-yme, v=y 1
=1 =1
(@) | Cost of computing single sample of up — up_1 Vi | Variance V{up — up_1]

= Minimize total cost C for a fixed variance 2

L L L
min Z NgCg s.t. Z /\\z = 62 — Ny = 6_2 (Z \/ Vka> Ve
/=1 /=1
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Multilevel Monte Carlo Method (Giles [2015])

m Coarser levels typically defined by spatial upscaling of the finest level

e Challenging for complex geomodels (channels, different rock types, etc.)
® The best methods are computationally expensive and may need hands-on tuning

® ... but level does not necessarily refer to spatial upscaling!

e Temporal discretization
e Multiscale methods with varying number of basis functions (Efendiev et al. [2013])
e Solver-based, e.g., fully- and sequential-implicit (Miiller et al. [2013, 2014])
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Multilevel Monte Carlo Method (Giles [2015])

m Coarser levels typically defined by spatial upscaling of the finest level

e Challenging for complex geomodels (channels, different rock types, etc.)

® The best methods are computationally expensive and may need hands-on tuning
® ... but level does not necessarily refer to spatial upscaling!

e Temporal discretization
e Multiscale methods with varying number of basis functions (Efendiev et al. [2013])
e Solver-based, e.g., fully- and sequential-implicit (Miiller et al. [2013, 2014])

Herein: Generic MLMC framework with spatial /temporal upscaling, solvers, and
tools from flow diagnostics to define coarser levels
— Reduced-physics Multilevel Monte Carlo Method
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Flow Diagnostics

Well-pair communlcatlon
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Allocations/volumetrics

Flow diagnostics: a family of simple and controlled numerical flow experiments that are
run to probe a reservoir model, establish connections and basic volume estimates, and
quickly provide a qualitative picture of the flow patterns in the reservoir and quantitative
measures of the heterogeneity in dynamic flow paths (Lie [2019]).
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Two examples

-

Quarter five-spot pattern
® hello world of reservoir simulation: 2D quarter five-spot
e Water injection in oil-filled reservoir

e Incompressible flow, quadratic relperms, po/py = 2

e Model log K by Gaussian process (Wood and Chan [2017])
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Two examples

-

. i Quarter five-spot pattern
- e hello world of reservoir simulation: 2D quarter five-spot
e Water injection in oil-filled reservoir
L 1_.,‘ e Incompressible flow, quadratic relperms, po/py = 2
; ‘ 4 e Model log K by Gaussian process (Wood and Chan [2017])

Norne Field Model (OPM [2019])

\\

e Real oil & gas field in the Norwegian sea >

e Rock from log-normal distribution ~ . \ xy
(Lorentzen et al. [2019]) N ‘ﬁ:§ 3 _
v y \&-—l———
® Inject 1 PV water into oil over 2 years )
o 0 E—
e Compressible flow, quadratic relperms 0.32 34 3588  378.67  3996.55
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Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV
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Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV

Strategy 1: Upscaling MLMC

Four levels defined by spatial upscaling (averaging of log K)

e Use fully-implicit solver on each level and compute recovery factor
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Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV

Strategy 1: Upscaling MLMC

Four levels defined by spatial upscaling (averaging of log K)

e Use fully-implicit solver on each level and compute recovery factor

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies
1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor
2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor
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Two examples

Challenge: TOF-based estimate tends to be biased
Solution: During warm-up, solve the same samples on level 1 and 3 — correct level 1

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies
1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor

2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor
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Example 1: Quarter five-spot problem

Upscaling MLMC hierarchy

10.1 32 101.3 320.4 1013.2
Permeability (md)
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Example 1: Quarter five-spot problem

Recovery factor estimate vs. cost (serial simulation time [s])
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Example 2: Norne Field Model

m Corner-point grid: 46 x 112 x 22, 44 915 active cells, complex topology (27 neighbors!)

m Faults, stratigraphic layers, pinch-outs, transmissibility multipliers, etc.

— Significantly more challenging to upscale
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Example 2: Norne Field Model

Recovery factor estimate vs. cost (serial simulation time [s])

0566 |- | e

oses - \/\/\M e

0.562 |- 1| RMSE: 498 x10~*

e

0088 1 7 | MLMC (reduced-phys.)

0.564 - A RF:  0.5632

0.562 |- || RMSE: 4.96x107*
0 > 4 6 s 10 12 "
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Concluding Remarks

Conclusions

m Flow diagnostics tools are very well suited as coarse-level solvers in MLMC
m Exemplified here with using time-of-flight to estimate recovery factor

= May be significantly more flexible than upscaling, especially for complex reservoirs
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Concluding Remarks

Conclusions

m Flow diagnostics tools are very well suited as coarse-level solvers in MLMC
m Exemplified here with using time-of-flight to estimate recovery factor

= May be significantly more flexible than upscaling, especially for complex reservoirs

Further work

m Experiment with other flow diagnostics tools
(tracer, drainage regions, data-driven models, etc.)
m Experiment with other types of uncertainty

® Investigate potential for industry-grade fluid physics complexity

14/16



Acknowledgements

The research reported in this presentation was funded in part by the Research Council
of Norway through grant no. 280950 and in part by Equinor Energy AS, Total E&P
Norge AS, and Wintershall DEA Norge AS

Source code coming soon to the open-source MATLAB
Reservoir Simulation Toolbox

mrst.no

15/16



References

Y.

Efendiev, O. lliev, and C. Kronsbein. Multilevel Monte Carlo methods using ensemble level mixed MsFEM for
two-phase flow and transport simulations. Comput. Geosci., 17(5):833-850, 2013. ISSN 14200597. doi:
10.1007/s10596-013-9358-y.

. B. Giles. Multilevel monte carlo methods. Acta Numer., pages 259-328, 2015. doi:

10.1017/S096249291500001X.

-A. Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User guide for the MATLAB

Reservoir Simulation Toolbox (MRST). Cambridge University Press, 2019. doi: 10.1017/9781108591416.

. Lorentzen, X. Luo, T. Bhakta, and R. Valestrand. History matching the full norne field model using seismic

and production data. SPE J., 2019. doi: 10.2118/194205-PA.

. Miiller, P. Jenny, and D. W. Meyer. Multilevel Monte Carlo for two phase flow and Buckley-Leverett

transport in random heterogeneous porous media. J. Comput. Phys., 250:685-702, 2013. ISSN 10902716.
doi: 10.1016/j.jcp.2013.03.023.

. Miiller, D. W. Meyer, and P. Jenny. Solver-based vs. grid-based multilevel Monte Carlo for two phase flow

and transport in random heterogeneous porous media. J. Comput. Phys., 268:39-50, 2014. ISSN 10902716.
doi: 10.1016/j.jcp.2014.02.047. URL http://dx.doi.org/10.1016/j.jcp.2014.02.047.

OPM. The Open Porous Media (OPM) Initative, 2019. URL https://opm-project.org/.

A.

T. A. Wood and G. Chan. Simulation of stationary gaussian processes in [0,1]¢. 3(4):409-432, 2017. doi:
10.1080,/10618600.1994.10474655.

16/16


http://dx.doi.org/10.1016/j.jcp.2014.02.047
https://opm-project.org/

1/4



Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u
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Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u

= Mean square error is now

M- )? = B [(E(w) ~ E[u])’]
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Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u

= Mean square error is now
M (u)? = E |(E(u) — B[u])?]

—E [(E(UL) —E [E(u)] + E [E(u)] — E[u])®
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Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u

= Mean square error is now
EM(u)? = E[(E(w) - Elul)?]
= E [(E(ur) ~ E[£(u)] + E[£(w)] ~ E[u])?]

= & [(E(ur) - BE@] + (BIE@)] - Blu])

[\

~~

Sampling error Approximation error
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Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u

= Mean square error is now

eV (u)? = VIE(u)] + (E[E(ur)] — E[u])’
———

Sampling error Approximation error
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Extra: Multilevel Monte Carlo

m Generally, uy is obtained by simulation, so that u; is approximation of u

= Mean square error is now

eV (u)? = VIE(u)] + (E[E(ur)] — E[u])’
———

Sampling error Approximation error

= Sampling error < £2/2 and approximation error < £2/2 ensures EM-(u;) < ¢
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Extra: Multilevel Monte Carlo

Generally, up is obtained by simulation, so that u; is approximation of u

= Mean square error is now

eV (u)? = VIE(u)] + (E[E(ur)] — E[u])’
———

Sampling error Approximation error

Sampling error < £2/2 and approximation error < £2/2 ensures EM-(u;) < ¢

Simplify notation: let E; be MC estimator of up — up_1

Ny L

1 i i
E, = ﬁg Z (uy’ ) u§€1)) , E(u) = Z E,

i=1 =0
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Extra: Multilevel Monte Carlo

If there exists independent estimators E; based on Ny MC samples, with expected cost Cp, and
variance Vy, and «, 8,7, ¢1, ¢, ¢3 > 0 such that o > min(8,v)/2, and

1 |E[u — u]] < q27 (Increase in accuracy)
2. V< 2Pt (Decrease in variance)
3. G < g2t (Increase in cost)

Then, there exists c4 > 0 such that for e < e™*, there are L, N, for which the estimator
E(u) =Y, E has EM-(u,) < ¢, and

G2

E[C] < { ae™?log(e)* B=1v
C45_2_('Y_B)/a ﬂ <7y
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Extra: Example 1

800 Samples N, 10 Cost Gy (s)
10"
107
80
10°°
8
10°
1 2 3 1 2 3 1 2 3
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Extra: Example 1

800 Samples N, 10 Cost Gy (s)

80

10°
1 2 3 1 2 3 1 2 3

= Estimated RMSE ~ 2.0 x 10~3, Total cost of MLMC: Yo NeCp = 3.79 x 103 s

m Assuming V[u;] ~ V[u1] and cost of computing one sample of u; ~ C;
— Cost of MC simulation with the same accuracy = 2.46 x 10° s
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