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Introduction

Uncertainty quantification in reservoir simulation

� Quantity of interest u typically derived from simulation results
Saturation at time t ′, water production rate, total oil production, etc.

... which are all random variables due to uncertain subsurface properties

· · ·K1 K2 K3 K4 K5 K6
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Monte Carlo Method

� Let u be random variable with expected value E[u] and variance V[u]

� Approximate E[u] from independent, identically distributed samples u1, . . . , uN

E[u] ≈ E (u) =
1

N

N∑
i=1

ui , V
[
E (u)

]
= E

[
(E (u)− E [E (u)])2

]
=

1

N
V[u]

� Upsides: Easy to implement and easy to parallelize

� Downside: Root mean square error (RMSE) of the estimator is

RMSE =
√
V
[
E (u)

]
= O(N−1/2)

→ Accuracy RMSE < ε requires N = O(ε−2) samples!
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Multilevel Monte Carlo Method (Giles [2015])

� Premise: we can obtain less expensive approximation u`−1 of u` for u1, . . . , uL ≡ u

� Express expected value as telescopic sum (with u0 ≡ 0)

E[uL] =
L∑

`=1

E[u` − u`−1]

� ... with unbiased estimator

E[uL] ≈ E (uL) =
L∑

`=1

(
1

N`

N∑̀
i=1

(
u

(`,i)
` − u

(`,i)
`−1

))

• Quantities u
(`,i)
` and u

(`,i)
`−1 from the same random sample i , different for each `
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Multilevel Monte Carlo Method (Giles [2015])

� Total cost C (e.g., CPU time) and total variance V :

C =
L∑

`=1

N`C`, V =
L∑

`=1

V`

N`

C` Cost of computing single sample of u` − u`−1 V` Variance V[u` − u`−1]

� Minimize total cost C for a fixed variance ε2

min
L∑

`=1

N`C` s.t.
L∑

`=1

V`

N`
= ε2 → N` = ε−2

(
L∑

k=1

√
VkCk

)√
V`

C`
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Multilevel Monte Carlo Method (Giles [2015])

� Coarser levels typically defined by spatial upscaling of the finest level

• Challenging for complex geomodels (channels, different rock types, etc.)
• The best methods are computationally expensive and may need hands-on tuning

� ... but level does not necessarily refer to spatial upscaling!

• Temporal discretization
• Multiscale methods with varying number of basis functions (Efendiev et al. [2013])
• Solver-based, e.g., fully- and sequential-implicit (Müller et al. [2013, 2014])

Herein: Generic MLMC framework with spatial/temporal upscaling, solvers, and
tools from flow diagnostics to define coarser levels
→ Reduced-physics Multilevel Monte Carlo Method
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Flow Diagnostics

Flow diagnostics: a family of simple and controlled numerical flow experiments that are
run to probe a reservoir model, establish connections and basic volume estimates, and
quickly provide a qualitative picture of the flow patterns in the reservoir and quantitative
measures of the heterogeneity in dynamic flow paths (Lie [2019]).
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Two examples

Quarter five-spot pattern

• hello world of reservoir simulation: 2D quarter five-spot

• Water injection in oil-filled reservoir

• Incompressible flow, quadratic relperms, µo/µw = 2

• Model logK by Gaussian process (Wood and Chan [2017])

Norne Field Model (OPM [2019])

• Real oil & gas field in the Norwegian sea

• Rock from log-normal distribution
(Lorentzen et al. [2019])

• Inject 1 PV water into oil over 2 years

• Compressible flow, quadratic relperms
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Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV

Strategy 1: Upscaling MLMC

Four levels defined by spatial upscaling (averaging of logK )

• Use fully-implicit solver on each level and compute recovery factor

Challenge: TOF-based estimate tends to be biased
Solution: During warm-up, solve the same samples on level 1 and 3 → correct level 1

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies

1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor

2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor

9 / 16



Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV

Strategy 1: Upscaling MLMC

Four levels defined by spatial upscaling (averaging of logK )

• Use fully-implicit solver on each level and compute recovery factor

Challenge: TOF-based estimate tends to be biased
Solution: During warm-up, solve the same samples on level 1 and 3 → correct level 1

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies

1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor

2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor

9 / 16



Two examples

Quantity of interest: recovery factor (RF) after injection of 1PV

Strategy 1: Upscaling MLMC

Four levels defined by spatial upscaling (averaging of logK )

• Use fully-implicit solver on each level and compute recovery factor

Challenge: TOF-based estimate tends to be biased
Solution: During warm-up, solve the same samples on level 1 and 3 → correct level 1

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies

1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor

2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor

9 / 16



Two examples

Challenge: TOF-based estimate tends to be biased
Solution: During warm-up, solve the same samples on level 1 and 3 → correct level 1

Strategy 2: Reduced-physics MLMC

Three levels defined by different solution strategies

1. Compute pressure, solve time-of-flight (TOF) and estimate recovery factor

2. Sequential-implicit solve (no outer iterations) and compute recovery factor

3. Fully-implicit solve and compute recovery factor

9 / 16



Example 1: Quarter five-spot problem

Upscaling MLMC hierarchy

64× 64 32× 32 16× 16 8× 8

Permeability (md)

10 / 16



Example 1: Quarter five-spot problem

Recovery factor estimate vs. cost (serial simulation time [s])

0.71

0.715

0.72

0.725

0.71

0.715

0.72

0.725

0 0.5 1 1.5 2 2.5 3 3.5

10
4

0.71

0.715

0.72

0.725

MC

RF: 0.719
RMSE: 9.99× 10−4

MLMC (upscaling)

RF: 0.712
RMSE: 9.96× 10−4

MLMC (reduced-phys.)

RF: 0.721
RMSE: 9.97× 10−4
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Example 2: Norne Field Model

· · ·

� Corner-point grid: 46× 112× 22, 44 915 active cells, complex topology (27 neighbors!)

� Faults, stratigraphic layers, pinch-outs, transmissibility multipliers, etc.

→ Significantly more challenging to upscale
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Example 2: Norne Field Model

Recovery factor estimate vs. cost (serial simulation time [s])

0.562
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MC

RF: 0.5632
RMSE: 4.98× 10−4

MLMC (reduced-phys.)

RF: 0.5632
RMSE: 4.96× 10−4
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Concluding Remarks

Conclusions

� Flow diagnostics tools are very well suited as coarse-level solvers in MLMC

� Exemplified here with using time-of-flight to estimate recovery factor

� May be significantly more flexible than upscaling, especially for complex reservoirs

Further work

� Experiment with other flow diagnostics tools
(tracer, drainage regions, data-driven models, etc.)

� Experiment with other types of uncertainty

� Investigate potential for industry-grade fluid physics complexity
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Developed by nuclear physicist Stanislaw Ulam during the Manhattan Project in the late 1940’s

It was at that time that I suggested an obvious name for the statistical method – a suggestion
not unrelated to the fact that Stan had an uncle who would borrow money from relatives
because he ”just had to go to Monte Carlo”

— Nicholas Metropolis, The Beginning of the Monte Carlo Method (1987)
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Extra: Multilevel Monte Carlo

� Generally, u` is obtained by simulation, so that uL is approximation of u

� Mean square error is now

� Sampling error < ε2/2 and approximation error < ε2/2 ensures EML(uL) < ε

� Simplify notation: let E` be MC estimator of u` − u`−1

E` =
1

N`

N∑̀
i=1

(
u

(`,i)
` − u

(`,i)
`−1

)
, E (uL) =

L∑
`=0

E`
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Extra: Multilevel Monte Carlo

Theorem

If there exists independent estimators E` based on N` MC samples, with expected cost C` and
variance V`, and α, β, γ, c1, c2, c3 > 0 such that α ≥ min(β, γ)/2, and

1. |E[u` − u]| ≤ c12−α` (Increase in accuracy)
2. V` ≤ c22−β` (Decrease in variance)
3. C` ≤ c32γ` (Increase in cost)

Then, there exists c4 > 0 such that for ε < e−1, there are L, N` for which the estimator
E (uL) =

∑
` E` has EML(uL) < ε, and

E[C ] ≤


c4ε

−2 β > γ

c4ε
−2 log(ε)2 β = γ

c4ε
−2−(γ−β)/α β < γ
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Extra: Example 1

1 2 3

8

80

800

1 2 3

10
-5

10
-4

10
-3

1 2 3

10
0

10
1

Samples N` Variance V` Cost C` (s)

� Estimated RMSE ≈ 2.0× 10−3, Total cost of MLMC:
∑

`N`C` ≈ 3.79× 103 s

� Assuming V[uL] ≈ V[u1] and cost of computing one sample of uL ≈ CL

→ Cost of MC simulation with the same accuracy = 2.46× 106 s
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