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Introduction

® Hot underground aquifers are appealing resources for energy production and storage
e Renewable 51 Always on 51 Available anywhere 51

= Viability depends a number of factors (Glassley [2010], Stober and Bucher [2013])
e Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

u Assessment requires solid system knowledge (Andersson [2007])
e Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...
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e Renewable 51 Always on 51 Available anywhere 51

= Viability depends a number of factors (Glassley [2010], Stober and Bucher [2013])
e Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

u Assessment requires solid system knowledge (Andersson [2007])
e Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...

Complexity and size typically renders numerical simulations the only viable option
(O’Sullivan et al. [2000], Lee [2010], Stober and Bucher [2013])
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m Geothermal simulation software (COMSOL, ANSYS, SEAWAT, FEFLOW, TOUGH?2, ...)
e High degree of physical complexity (EOS, compositional, geochemistry, etc.)
e Less flexible/lacks complex gridding, realistic well modelling and efficient solvers
m QOil & Gas simulation software (ECLIPSE, INTERSECT, ECHELON, tNavigator, Nexus, ...)
e Flexible and complex gridding, well modelling and efficient solvers
e Physics limited to those involved in hydrocarbon recovery

® Large and active research community

(Scott et al. [2017], Weis et al. [2014], Vehling et al. [2018], Wang et al. [2020], Wong [2018], ...)
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Introduction

Geothermal | Oil & Gas
Physical complexity 55
Flexible gridding 55
Realistic well modelling 55
Efficient linear/nonlinear solvers 55*

Here: Present ongoing work on implementing low- to moderate-temperature
geothermal simulation capabilities in the the open-source MATLAB Reservoir
Simulation Toolbox (MRST)
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Governing equations and discretization

® Single-phase conservation of mass on semi-discrete, implicit form

R = L (MITt - M)+ V- VI Q=0

e Mass flux from Darcy's law: V; = —%K(Vp — pr&)

Y

4/15



Governing equations and discretization

= Conservation of energy on semi-discrete, implicit form

R = Lo (IMeug + Mou, )™ — [Mrug + M,u,]") + V- (Vehs + H)™ ™ — Qeh?*t =0

Internal energy Advective heat flux k(Conductive heat flux}

e Heat flux from Fourier's law: H = —(\s + A\, )V T
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Governing equations and discretization

= Conservation of energy on semi-discrete, implicit form
ROV = L [Mfuf + Myu, )"t — [Mfuf + Myu,]") (Vihs + H)™ — Qehftt =0

Internal energy Advectlve heat flux k(Conductlve heat flux}

e Heat flux from Fourier's law: H = —(\s + A\, )V T

® Finite-volume + implicit timestepping — stable over wide range of parameters

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

X = x" 4+ Ax, — 9B Ax = R(x*)
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Governing equations and discretization

m Open-source — full source code access

Flexible, fully-unstructured grid format

® |ndustry-grade well modelling and control

m C++ accelerated backends, compiled linear solvers

MATLAB Reservoir simulation Toolbox

m Discrete operators + automatic differentiation
mrst.no
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Governing equations and discretization

m Open-source — full source code access

Flexible, fully-unstructured grid format

® |ndustry-grade well modelling and control

m C++ accelerated backends, compiled linear solvers

MATLAB Reservoir simulation Toolbox m Discrete operators + automatic differentiation

mrst.no
V-H H=—(\r+A)VT
div(H) H = -(lambdaF + lambdaR) .*grad(T)

Automatic differentiation: Combine chain rule and elementary differentiation
rules by means of operator overloading to analytically evaluate all derivatives
— Computing Jacobians amounts to writing down residual equations.

5/15



Governing equations and discretization

1) Define continuous residual equations 2) Create simulator graph to discretize equations

ri =9 4V i —q;=0 R; :$<@n+l+@"> +V @_\
\

3) Differentiate discrete residual with AD and solve:
= 9B gkl — gk JoIR

Simulator graph

PVT

Pe = Poh = gAZpmic

state 5 ) Darcy’s law " )

.‘ B

. ‘ Flow relations
.» '

- .»

4) Post: Make decisions, compute sensitivites, ...

Graph of functions for multiphysics problems
Simulation on graphs | Easy to modify, extend and understand
Smart automatic differentiation for high performance
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Example: TOUGH2 validation

100 m
No flux
E
E
o
=2
o . . .
. g ® Injection of H,O into H,O 4+ NaCl
£|8g LMy 100 M. (51, 101) ;1': L .
s gﬁi = ‘ m Injection temperature: 50°C, reservoir temperature: 10°C
N T F:
iy 3 . . . . . .
e \Injecﬁon(facecenhoids) ) = Two monitoring points: injection boundary and center
(0,99) and (0,101)
x
2 T =10C
2 P =100 bars
M
L‘X No flux

7/15



Example: TOUGH2 validation
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Example: Enhanced Geothermal System (EGS)

Fractured, low-perm, high-temp, subsurface rock

m Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

® Injection temp: 10 °C, reservoir temp: 95 °C

8/15



Example: Enhanced Geothermal System (EG

Fractured, low-perm, high-temp, subsurface rock

m Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

® Injection temp: 10 °C, reservoir temp: 95 °C

G2D = pebiGrid2D(dx, xmax(1:2), 'cellConstraints', fractures, ... J Fractures
'CCRefinement' , true , ... /h Refine fractures
'CCFactor' , 0.1 E % Relative fracture size

layers = diff(linspace(0, xmax(3), nlayers + 1)); % Make layered grid

G = makeLayeredGrid(G2D, layers);
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Example: Enhanced Geothermal System (EGS)

Fractured, low-perm, high-temp, subsurface rock

m Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

® Injection temp: 10 °C, reservoir temp: 95 °C

fluid = addThermalFluidProps(fluid

>

. % Original fluid

'Cp' , 4.2e3*joule/ (Kelvinkgram), ... 7 Heat capacity
'lambdaF', 0.6+Watt/(meter*Kelvin) , ... % Thermal cond
'useE0S' , true ); % Use EOS
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Example: Enhanced Geothermal System (EGS)

Fractured, low-perm, high-temp, subsurface rock

m Water circulates through the fracture network
— Fractures act as fins of a heat exchanger

Here: artificial network in confined, insulated box

® Injection temp: 10 °C, reservoir temp: 95 °C

rock = addThermalRockProps(rock , ... % Original rock
'CpR' , 1000xjoule/ (Kelvinkgram), ... 7, Heat capacity

'lambdaR', 2*Watt/(meterxKelvin , ... / Thermal conductivity
'rhoR' , 2700%kilogram/meter"3 ); % Rock density
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Example: Enhanced Geothermal System (EGS)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)

m HT-ATES system in artificial but realistic geological model
m Two groups of four wells used to store and extract hot water!

e 4 months storage — 2 months rest — 4 months production — 2 months rest
—_———

summer

winter

e Rate-controlled injection, BHP-controlled production

HT-ATES: Flexible, large-scale, subsurface energy storage
e Balance energy supply from multiple temporal resources (wind, hydro, solar, ...)

e Supply extra energy in periods of high demand (store in summer, extract in winter)

YInspired by previous work (Collignon et al. [2020])
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Example: High-temperature aquifer thermal energy storage (HT-ATES)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)

27 449 cells x (pressure + temperature) = 54 898 dofs

Solver time

Assembly time
0.20 s/nl it

0.18 s/nl it

1 Total simulation time (4 years, 144 timesteps): 160 s
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Example: High-temperature aquifer thermal energy storage (HT-ATES)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)
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Concluding remarks

What’s done?
= First step towards a module for geothermal simulations in MRST
e n salt components, temperature-, pressure- and salinity-dependent EOS
® Applicable to realistic low- to moderate-enthalpy geothermal systems
e Enhanced geothermal systems (EGS), aquifer thermal energy storage (ATES)
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Concluding remarks

What’s done?
= First step towards a module for geothermal simulations in MRST
e n salt components, temperature-, pressure- and salinity-dependent EOS
® Applicable to realistic low- to moderate-enthalpy geothermal systems
e Enhanced geothermal systems (EGS), aquifer thermal energy storage (ATES)

mrst.no

Source code: bitbucket.org/mrst/workspace/projects/MRST
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Concluding remarks

What’s next?
® Implement phase transitions (liquid, vapor, halite) and hydrocarbon components
= Combine with tools from Q&G reservoir engineering

e Optimal well control (adjoint), history matching, uncertainty quantification, ...
® Investigate discretizations and solution strategies

e Splitting, global Newton methods, domain decomposition, ...
m Extensive verification against existing software

e Already verified against TOUGH2 for simple case with H,O + NaCl
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