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Introduction

� Hot underground aquifers are appealing resources for energy production and storage

• Renewable 51 Always on 51 Available anywhere 51

� Viability depends a number of factors (Glassley [2010], Stober and Bucher [2013])

• Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

� Assessment requires solid system knowledge (Andersson [2007])

• Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...

Complexity and size typically renders numerical simulations the only viable option
(O’Sullivan et al. [2000], Lee [2010], Stober and Bucher [2013])
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� Geothermal simulation software (COMSOL, ANSYS, SEAWAT, FEFLOW, TOUGH2, ...)

• High degree of physical complexity (EOS, compositional, geochemistry, etc.)
• Less flexible/lacks complex gridding, realistic well modelling and efficient solvers

� Oil & Gas simulation software (ECLIPSE, INTERSECT, ECHELON, tNavigator, Nexus, ...)

• Flexible and complex gridding, well modelling and efficient solvers
• Physics limited to those involved in hydrocarbon recovery

� Large and active research community
(Scott et al. [2017], Weis et al. [2014], Vehling et al. [2018], Wang et al. [2020], Wong [2018], ...)
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Introduction

Geothermal Oil & Gas
Physical complexity 51 55
Flexible gridding 55 51∗

Realistic well modelling 55 51
Efficient linear/nonlinear solvers 55∗ 51

Here: Present ongoing work on implementing low- to moderate-temperature
geothermal simulation capabilities in the the open-source MATLAB Reservoir

Simulation Toolbox (MRST)
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Governing equations and discretization

� Single-phase conservation of mass on semi-discrete, implicit form

Rn+1
f = 1

∆tn (Mn+1
f −Mn

f ) +∇ · ~V n+1
f − Q f = 0

• Mass flux from Darcy’s law: ~Vf = − ρf

µf
K(∇p − ρf ~g)

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

xk+1 = xk + ∆x , − ∂R
∂x

∆x = R(xk)

Mass Flux Sources/sinks
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Governing equations and discretization

� Conservation of energy on semi-discrete, implicit form

Rn+1
e = 1

∆tn ([Mf uf + Mrur ]
n+1 − [Mf uf + Mrur ]

n) +∇ · ( ~Vf hf + ~H)n+1 − Qf h
n+1
f = 0

• Heat flux from Fourier’s law: ~H = −(λf + λr )∇T

� Finite-volume + implicit timestepping → stable over wide range of parameters

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms

xk+1 = xk + ∆x , − ∂R
∂x

∆x = R(xk)

Internal energy Advective heat flux Conductive heat flux

Enthalpy
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Governing equations and discretization

MATLAB Reservoir simulation Toolbox
mrst.no

� Open-source → full source code access

� Flexible, fully-unstructured grid format

� Industry-grade well modelling and control

� C++ accelerated backends, compiled linear solvers

� Discrete operators + automatic differentiation

∇ · ~H ~H = −(λf + λr )∇T
div(H) H = -(lambdaF + lambdaR).*grad(T)

Automatic differentiation: Combine chain rule and elementary differentiation
rules by means of operator overloading to analytically evaluate all derivatives
→ Computing Jacobians amounts to writing down residual equations.
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Governing equations and discretization

Vi,α Vi
λf
i,α

gρα∆z TfΘα

vαΘα

Θα ≤ 0

∇pα

Tf

λf
α

Darcy’s law

Qi,α Qi
W → c

pc − pbh − g∆zρmix

qα
WI

Wells

ρα

pα Φ wp
i

bα

µα

PVT

pc λi,α

ραxi,α

Mi,α Mi

λαkα

Flow relations

pw

p

S

state

1) Define continuous residual equations
ri =

∂mi

∂t +∇ · ~v − qi = 0

2) Create simulator graph to discretize equations
1

∆t

(
Mi

n+1+ Mi
n

)
+∇· Vi − QiRi =

Simulator graph
3) Differentiate discrete residual with AD and solve:
Jij =

∂Ri

∂vj
, xk+1 = xk − J−1R, . . .

4) Post: Make decisions, compute sensitivites, …

Graph of functions for multiphysics problems
Simulation on graphs Easy to modify, extend and understand

Smart automatic differentiation for high performance
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Example: TOUGH2 validation
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� Injection of H2O into H2O + NaCl

� Injection temperature: 50◦C, reservoir temperature: 10◦C

� Two monitoring points: injection boundary and center
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Close match between MRST and TOUGH2
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Example: Enhanced Geothermal System (EGS)

� Fractured, low-perm, high-temp, subsurface rock

� Water circulates through the fracture network
→ Fractures act as fins of a heat exchanger

� Here: artificial network in confined, insulated box

� Injection temp: 10 ◦C, reservoir temp: 95 ◦C
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� Fractured, low-perm, high-temp, subsurface rock

� Water circulates through the fracture network
→ Fractures act as fins of a heat exchanger

� Here: artificial network in confined, insulated box

� Injection temp: 10 ◦C, reservoir temp: 95 ◦C

G2D = pebiGrid2D(dx, xmax(1:2), 'cellConstraints', fractures, ... % Fractures

'CCRefinement' , true , ... % Refine fractures

'CCFactor' , 0.1 ); % Relative fracture size

layers = diff(linspace(0, xmax(3), nlayers + 1)); % Make layered grid

G = makeLayeredGrid(G2D, layers);
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Example: Enhanced Geothermal System (EGS)

� Fractured, low-perm, high-temp, subsurface rock

� Water circulates through the fracture network
→ Fractures act as fins of a heat exchanger

� Here: artificial network in confined, insulated box

� Injection temp: 10 ◦C, reservoir temp: 95 ◦C

fluid = addThermalFluidProps(fluid , ... % Original fluid

'Cp' , 4.2e3*joule/(Kelvin*gram), ... % Heat capacity

'lambdaF', 0.6*Watt/(meter*Kelvin) , ... % Thermal cond

'useEOS' , true ); % Use EOS

8 / 15



Example: Enhanced Geothermal System (EGS)

� Fractured, low-perm, high-temp, subsurface rock

� Water circulates through the fracture network
→ Fractures act as fins of a heat exchanger

� Here: artificial network in confined, insulated box

� Injection temp: 10 ◦C, reservoir temp: 95 ◦C

rock = addThermalRockProps(rock , ... % Original rock

'CpR' , 1000*joule/(Kelvin*gram), ... % Heat capacity

'lambdaR', 2*Watt/(meter*Kelvin , ... % Thermal conductivity

'rhoR' , 2700*kilogram/meter̂ 3 ); % Rock density

8 / 15



Example: Enhanced Geothermal System (EGS)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)

� HT-ATES system in artificial but realistic geological model

� Two groups of four wells used to store and extract hot water1

• 4 months storage︸ ︷︷ ︸
summer

– 2 months rest – 4 months production︸ ︷︷ ︸
winter

– 2 months rest

• Rate-controlled injection, BHP-controlled production

HT-ATES: Flexible, large-scale, subsurface energy storage

• Balance energy supply from multiple temporal resources (wind, hydro, solar, ...)

• Supply extra energy in periods of high demand (store in summer, extract in winter)

1Inspired by previous work (Collignon et al. [2020])
10 / 15



Example: High-temperature aquifer thermal energy storage (HT-ATES)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)

27 449 cells × (pressure + temperature) = 54 898 dofs

Assembly time
0.18 s/nl it

Solver time
0.20 s/nl it

Total simulation time (4 years, 144 timesteps): 160 s
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Example: High-temperature aquifer thermal energy storage (HT-ATES)

First storage First extraction

Last storage Last extraction

Temperature (◦C)
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Example: High-temperature aquifer thermal energy storage (HT-ATES)
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Concluding remarks

What’s done?

� First step towards a module for geothermal simulations in MRST

• n salt components, temperature-, pressure- and salinity-dependent EOS

� Applicable to realistic low- to moderate-enthalpy geothermal systems

• Enhanced geothermal systems (EGS), aquifer thermal energy storage (ATES)

Source code:
mrst.no

bitbucket.org/mrst/workspace/projects/MRST
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Concluding remarks

What’s next?

� Implement phase transitions (liquid, vapor, halite) and hydrocarbon components

� Combine with tools from O&G reservoir engineering

• Optimal well control (adjoint), history matching, uncertainty quantification, ...

� Investigate discretizations and solution strategies

• Splitting, global Newton methods, domain decomposition, ...

� Extensive verification against existing software

• Already verified against TOUGH2 for simple case with H2O + NaCl
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