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SF Underground thermal energy storage (UTES)

e The subsurface is an excellent candidate for scalable energy storage

— Circulate water through fractured bedrock (fractures ~ fins of a heat exchanger)
— Charge with excess heat from e.g., industrial processes/waste incineration
— Constant discharge of base heat, rapid discharge of heat in periods of high demand

e Complex geology (horizons, faults, intertwined fracture networks, ...)

e Complex operation (multiple wells, heaters, heat pumps, heat exchangers, ...)

Intersecting fractures
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— Circulate water through fractured bedrock (fractures ~ fins of a heat exchanger)
— Charge with excess heat from e.g., industrial processes/waste incineration
— Constant discharge of base heat, rapid discharge of heat in periods of high demand

e Complex geology (horizons, faults, intertwined fracture networks, ...)
e Complex operation (multiple wells, heaters, heat pumps, heat exchangers, ...)

e To justify investments and fully utilize potential of underground thermal energy
storage, numerical simulation and optimization is imperative.

Here: Show how a fully differentiable geoenergy simulator can be integrated in a larger system
model, and practically used for operational support and iterative model tuning
— Towards digital twin system for underground thermal energy storage
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PDE-constrained optimization

Apartment heating

Minimize C (e.g., cost of delivering heat
to apartment complex), while ensuring
conservation of mass/thermal energy

min, C(x(u)) such that S(x(u),u,6) =0
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Controls (pump rates, energy input, ...)

e (Parameters (geology, COP, dissipation, ...)

Q1 what parameters 6 give output x that matches observed data?
Q2 what are the optimal controls u that minimize cost?
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Sirer Digital twin system enablers

Standalone Diagnostic Prescriptive
Standalone description of the asset Can present diagnostic information which Can provide prescription or recommendations
disconnected from the real environment. supports users with condition monitoring and based on what if / risk analysis and uncertainty
The physical asset may not yet exist. troubleshooting. quantification.
Descriptive Predictive Autonomous
CAD-models and real-time stream of sensor Can predict the system's future Can replace the user by closing the control
data describe the up to date state of the asset states or performance and can support loop to make decisions and execute control
at any point of time. prognostic capabilities. actions on the system autonomously.

San, Rasheed, and Kvamsdal 2021
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el |Loop-based modeling approach

‘ e System conceptualized as set of closed loops

Apartment heating

e Heat moved between loops by heat pumps,
exchangers or common components

e Each system compoent is a differentiable
physical model with its own internal state

Heat pump
L1-13

e Through loops, all system components are
coupled together and simulated as a single,
large model

Thermal colector
(intermitent)
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Double/multi-loop element
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Assembling the loops

loop 1

(loop 1)
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Digital twin system requirements

SINTEF
Standalone Diagnostic Prescriptive
Standalone description of the asset Can present diagnostic information which Can provide prescription or recommendations
disconnected from the real environment. supports users with condition monitoring and based on what if / risk analysis and uncertainty
The physical asset may not yet exist. troubleshooting. quantification.
Descriptive Predictive Autonomous
CAD-models and real-time stream of sensor Can predict the system's future Can replace the user by closing the control
data describe the up to date state of the asset states or performance and can support loop to make decisions and execute control
at any point of time. prognostic capabilities. actions on the system autonomously.

San, Rasheed, and Kvamsdal 2021
1. Composable and modular in the design of system components
2. Able to integrate and adapt to external data streams (real-time/forecast)
3. Fully differentiable, i.e., able to provide sensitivities/gradients
4. Able to quantify uncertainty
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Enabling technology: automatic differentiation

SINTEF

e Introduce extended pair, (v, vy), to represent the value v and its derivative vy

e Combine chain rule and elementary derivative rules
— mechanically accumulate derivatives at specific values of x

Elementary: v = sin(x) —  (v) = (sinx, cosx)
Arithmetic:  v=fxg — V)= *g.f*xgx+fixg)
Chainrule:  v=exp(f(x)) — (v) = (exp(f(x)), exp(f(x))f'(x))

e Use operator overloading to avoid messing up code

z = ADI Properties:

48 5 x = ADI Properties: = ADI Properties:
[x,y] = initVariablesADI(1,2); val: 1 Y g val: 0.4060
Z = s*exp(—x*y) jac: {[}\] [2}} jac: {[R] [1&1} jac: {[-0‘%1201 [-0.%060]}
' \ ' \ ’ \
1 \ I ' / \
' \ ' \ ’ \
00 o o w0 oz
Ox Ay ox dy 0z |z=1,y=2 OY lo=1,y=2
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SiNTErR Adjoint-based optimization

Define a Lagrange function (cost function C penalized by simulator residual)
Jr = C(x(u),0) + X' S(x(u), u,0)
Gradient: differentiate with respect to u

du_<8x+>\ o) N ot
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SiNTErR Adjoint-based optimization

Define a Lagrange function (cost function C penalized by simulator residual)
Jr = C(x(u),0) + X" S(x(u), u,0)
Gradient: differentiate with respect to u

du_<8x+>\ o) N i F

Forward simulation:
S(x(u),u,6) =0
Solved with a
standard simulator
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SiNTErR Adjoint-based optimization

Define a Lagrange function (cost function C penalized by simulator residual)
Jr = C(x(u),0) + X" S(x(u), u,0)
Gradient: differentiate with respect to u

(1]>\:<8C+>\T68> x 705 STdA

du 0x 10)4 Ju , du
=0
Adjoint equations: Forward simulation:
(0S/0x)T A = —(8Cc/ox) " S(x(u),u,0) =0
Solved backward for A Solved with a
after solving forward for x standard simulator
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SINTEF Adjoint-based optimization

Define a Lagrange function (cost function C penalized by simulator residual)
Jr = C(x(u),0) + X" S(x(u), u,0)
Gradient: differentiate with respect to u

d]A:<ac+/\Tas> x 705 STdA

du ox ox Ju , du
Adjoint equations: Automatic differentiation: Forward simulation:
(0S/0x)T A= —(ac/ox)" 08 /du computed “behind the curtain” S(x(u),u,6) =0
Solved backward for A by the code during the backward adjoint Solved with a
after solving forward for x solve (set u as independent variable) standard simulator
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Model tuning




SINTEF Wesselkvartalet

e Residential/commercial building in Asker (NO)

e Multi-reservoir, shallow geothermal storage
— Three reservoirs at different depths

More than 100 wells, coupled in groups

Constant base load, rapid release at peak loads

Connected to deicing system for the city streets

Pump|

®

Heat pump
12513

Heat
pump ‘)
L2 €

Geological
jow entalpy

. .
. e e

Here: tune shallow reservoir based on observed temperatures

Gravel layer and accumulator
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Wesselkvartalet

model parameter tuning
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Wesselkvartalet - model parameter tuning

©  Measurements
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e \Very poor match for untuned base model

e Excellent match for tuned model on tuning data

e Very good match for tuned model on

— Remarkably good since
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SINTEE Wesselkvartalet - optimal control

Pump| m

R e Charge reservoir for 90 days
® e Rest for 60 days
e Discharge for 65 days:
S — 60dé61l/s,75°C, 5d 81/s, 90°C
e Control variables:
= = — rates for L1/L2, power of heater in L1
= e Minimize total cost over whole cycle
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Wesselkvartalet - optimal control

External factors

e Varying solar radiation
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Wesselkvartalet - optimal control

External factors

e Varying solar radiation
e Varying energy prices
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Optimal control: energy consumption and cost

Base case

Optimized
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Optimal control: energy consumption and cost

SINTEF

Effect Energy consumption Total cost
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Sirer Concluding remarks

Towards digital twin system for underground thermal energy storage
e Composable and modular modelling framework
— Coupling of complex simulation models into a single simulator
e Fully differentiable code
— Compute sensitivities and perform adjoint-based optimization
e Two examples of important applications

— Model parameter tuning - model output matches observations
— Control optimization - minimize operational costs

e Next steps:

— Integrate and adapt to external data streams (real-time/forecast)
— Incorporate uncertainty - quantify, optimize under uncertainty
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Sirer Concluding remarks

l TRANSFORMING RESEARCH

All simulation code has been developed in the open-source MATLAB Reservoir Simulation Toolbox
e Source code, documentation, tutorials, etc.; mrst.no

e Book chapter on geothermal modelling with MRST (open-access):
Collignon, M., Klemetsdal, @, Mgyner, O. (2021). Simulation of Geothermal Systems Using MRST

Cambridge University Press. doi: 10.1017/9781009019781.018

e Conference paper on modelling and optimization of geothermal energy systems:
Klemetsdal, @., et al. (2022). Modeling and Optimization of Shallow Geothermal Heat Storage

ECMOR 2022, Sep 2022. doi: 10.3997/2214-4609.202244109 - Journal version in press (Geoenergy, 2023)
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Sirer Governing equations and discretization

Finite volumes in space, implicit backward Euler in time

Ry = m (M — M) + div(V)") — Q)T =0
Vi = —upw(pw/pw)Olgrad(p) — gfavg(pw)grad(z)]

e Ograd: discrete representation of KV (linear/nonlinear two-/multipoint, etc.)

— In this work: linear two-point flux approximation (comparison: Klemetsdal et al. 2020)
— ©: vector of interface transmissibilities

e div: divergence, upw: upwind (single-point here), favg: face average

M  Mass
p  Density
p  Pressure

V. Flux
v Viscosity
T  Temperature

Q  Sources/sinks
u Internal energy
K  Permeability

g  Gravity
h  Enthalpy
A Thermal cond.
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Sirer Governing equations and discretization

Finite volumes in space, implicit backward Euler in time

R = L ((Myu, + M, " — [Myu, + Ma,]")
+div ([thw + Hc]n+1) — [Qwhy " — Qn+1
H = _(ehw + ehr)grad(T)

e Conductive heat flux H, discretized by two-point method (same as mass flux)

— (Opy + Oy )grad: discrete representation of (Ay, + A;)V
— Oy, Oy, vectors of interface heat transmissibilities
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Sirer Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
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Fourier’s law
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— Oy, Oy, vectors of interface heat transmissibilities
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