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Underground thermal energy storage (UTES)

• The subsurface is an excellent candidate for scalable energy storage
— Circulate water through fractured bedrock (fractures ≈ fins of a heat exchanger)— Charge with excess heat from e.g., industrial processes/waste incineration— Constant discharge of base heat, rapid discharge of heat in periods of high demand

• Complex geology (horizons, faults, intertwined fracture networks, ...)
• Complex operation (multiple wells, heaters, heat pumps, heat exchangers, ...)

Intersecting fractures Clay-filled fault Clay sample
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— Circulate water through fractured bedrock (fractures ≈ fins of a heat exchanger)— Charge with excess heat from e.g., industrial processes/waste incineration— Constant discharge of base heat, rapid discharge of heat in periods of high demand

• Complex geology (horizons, faults, intertwined fracture networks, ...)
• Complex operation (multiple wells, heaters, heat pumps, heat exchangers, ...)
• To justify investments and fully utilize potential of underground thermal energystorage, numerical simulation and optimization is imperative.

Here: Show how a fully differentiable geoenergy simulator can be integrated in a larger systemmodel, and practically used for operational support and iterative model tuning
→ Towards digital twin system for underground thermal energy storage
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Underground thermal energy storage system

Q1 what parameters θ give output x that matches observed data?
Q2 what are the optimal controls u that minimize cost?
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Underground thermal energy storage system

PDE-constrained optimization

Minimize C (e.g., cost of delivering heatto apartment complex), while ensuringconservation of mass/thermal energy
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) such that S
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Digital twin system enablers

San, Rasheed, and Kvamsdal 2021

1. Composable and modular in the design of system components
2. Able to integrate and adapt to external data streams (real-time/forecast)
3. Fully differentiable, i.e., able to provide sensitivities/gradients
4. Able to quantify uncertainty
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Loop-based modeling approach

• System conceptualized as set of closed loops
• Heat moved between loops by heat pumps,exchangers or common components
• Each system compoent is a differentiablephysical model with its own internal state
• Through loops, all system components arecoupled together and simulated as a single,large model
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Single-loop element
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ξin ξout

ξα = (rateα, Tα)

element

x (state)ξin ξout

syst
em

eq.
out

eq.



Double/multi-loop element
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ξ1in ξ1out

ξ2in ξ2out
ξl
α = (ratel

α, Tl
α)

element
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Assembling the loops
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(loop 1)
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Digital twin system requirements

San, Rasheed, and Kvamsdal 2021
1. Composable and modular in the design of system components
2. Able to integrate and adapt to external data streams (real-time/forecast)
3. Fully differentiable, i.e., able to provide sensitivities/gradients
4. Able to quantify uncertainty
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Enabling technology: automatic differentiation

• Introduce extended pair, ⟨v, vx⟩, to represent the value v and its derivative vx• Combine chain rule and elementary derivative rules
— mechanically accumulate derivatives at specific values of x

Elementary: v = sin(x) −→ ⟨v⟩ = ⟨sin x, cos x⟩Arithmetic: v = f ∗ g −→ ⟨v⟩ = ⟨f ∗ g, f ∗ gx + fx ∗ g⟩Chain rule: v = exp(f (x)) −→ ⟨v⟩ = ⟨exp(f (x)), exp(f (x))f ′(x)⟩

• Use operator overloading to avoid messing up code
[x,y] = initVariablesADI(1 ,2) ;
z = 3*exp(−x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y
∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2
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Adjoint-based optimization

Define a Lagrange function (cost function C penalized by simulator residual)
Jλ = C

(
x(u),θ

)
+ λ⊤S

(
x(u),u,θ

)

Gradient: differentiate with respect to u

dJλ
du

=

(
∂C
∂x

+ λ⊤∂S
∂x

)
dx
du

+ λ⊤∂S
∂u

+ S⊤ dλ
du

Adjoint equations:
(∂S/∂x)⊤ λ = − (∂C/∂x)⊤Solved backward for λafter solving forward for x

Automatic differentiation:
∂S/∂u computed “behind the curtain”by the code during the backward adjointsolve (set u as independent variable)

Forward simulation:
S
(

x(u),u,θ
)
= 0

Solved with astandard simulator

=0
=0
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Model tuning



Wesselkvartalet

• Residential/commercial building in Asker (NO)
• Multi-reservoir, shallow geothermal storage

— Three reservoirs at different depths— More than 100 wells, coupled in groups— Constant base load, rapid release at peak loads— Connected to deicing system for the city streets

Gravel layer and accumulator Wells (from above)

Here: tune shallow reservoir based on observed temperatures

Ø. Klemetsdal Digital twins for underground thermal energy storage 11 / 16



Wesselkvartalet – model parameter tuning
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• Very poor match for untuned base model
• Excellent match for tuned model on tuning data
• Very good match for tuned model on prediction data

— Remarkably good since prediction data describes twodischarge periods with reversed flow compared to tuning
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Control optimization



Wesselkvartalet – optimal control

Scenario

• Charge reservoir for 90 days
• Rest for 60 days
• Discharge for 65 days:

— 60 d 6 l/s, 75◦C, 5 d 8 l/s, 90◦C
• Control variables:

— rates for L1/L2, power of heater in L1
• Minimize total cost over whole cycle
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Wesselkvartalet – optimal control

External factors

• Varying solar radiation

• Varying energy prices
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Optimal control: energy consumption and cost
Ba

se
ca
se

O
pti

m
ize

d

Ø. Klemetsdal Digital twins for underground thermal energy storage 14 / 16



Optimal control: energy consumption and cost
Ba

se
ca
se

O
pti

m
ize

d

Total energy cost:- 9.77 MNOK (unoptimized)- 7.82 MNOK (optimized)
−→ 20.0% reduction
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Concluding remarks

Towards digital twin system for underground thermal energy storage

• Composable and modular modelling framework
— Coupling of complex simulation models into a single simulator

• Fully differentiable code
— Compute sensitivities and perform adjoint-based optimization

• Two examples of important applications
— Model parameter tuning – model output matches observations— Control optimization – minimize operational costs

• Next steps:
— Integrate and adapt to external data streams (real-time/forecast)— Incorporate uncertainty – quantify, optimize under uncertainty
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Concluding remarks

MRST
TRANSFORMING RESEARCH

All simulation code has been developed in the open-source MATLAB Reservoir Simulation Toolbox
• Source code, documentation, tutorials, etc.; mrst.no
• Book chapter on geothermal modelling with MRST (open-access):Collignon, M., Klemetsdal, Ø, Møyner, O. (2021). Simulation of Geothermal Systems Using MRST

Cambridge University Press. doi: 10.1017/9781009019781.018
• Conference paper on modelling and optimization of geothermal energy systems:Klemetsdal, Ø., et al. (2022). Modeling and Optimization of Shallow Geothermal Heat Storage

ECMOR 2022, Sep 2022. doi: 10.3997/2214-4609.202244109 – Journal version in press (Geoenergy, 2023)
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https://www.sintef.no/projectweb/mrst/
https://doi.org/10.1017/9781009019781.018
https://doi.org/10.3997/2214-4609.202244109
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Technology for abetter society



Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
Rn+1

w = 1
∆tn (Mn+1

w − Mn
w) + div(Vn+1

w )− Qn+1
w = 0

Vw = −upw(ρw/µw)Θ[grad(p)− gfavg(ρw)grad(z)]

• Θgrad: discrete representation of K∇ (linear/nonlinear two-/multipoint, etc.)
— In this work: linear two-point flux approximation (comparison: Klemetsdal et al. 2020)— Θ: vector of interface transmissibilities

• div: divergence, upw: upwind (single-point here), favg: face average
M Mass V Flux Q Sources/sinks g Gravity
ρ Density µ Viscosity u Internal energy h Enthalpy
p Pressure T Temperature K Permeability Λ Thermal cond.
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Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
Rn+1

h = 1
∆tn

(
[Mwuw + Mrur]

n+1 − [Mwuw + Mrur]
n)

+ div
(
[Vwhw + Hc]

n+1)− [Qwhw]
n+1 − Qn+1

h = 0

Hc = −(Θhw +Θhr)grad(T)

• Conductive heat flux Hc discretized by two-point method (same as mass flux)
— (Θhw +Θhr)grad: discrete representation of (Λw +Λr)∇— Θhw, Θhr: vectors of interface heat transmissibilities

M Mass V Flux Q Sources/sinks g Gravity
ρ Density µ Viscosity u Internal energy h Enthalpy
p Pressure T Temperature K Permeability Λ Thermal cond.
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Finite volumes in space, implicit backward Euler in time
Rn+1

h = 1
∆tn
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n)

+ div
(
[Vwhw + Hc]

n+1)− [Qwhw]
n+1 − Qn+1

h = 0

Hc = −(Θhw +Θhr)grad(T)

• Conductive heat flux Hc discretized by two-point method (same as mass flux)
— (Θhw +Θhr)grad: discrete representation of (Λw +Λr)∇— Θhw, Θhr: vectors of interface heat transmissibilities

M Mass V Flux Q Sources/sinks g Gravity
ρ Density µ Viscosity u Internal energy h Enthalpy
p Pressure T Temperature K Permeability Λ Thermal cond.

Conservation of energy

Fourier’s law

Ø. Klemetsdal Digital twins for underground thermal energy storage 1 / 1


	Introduction
	Digital twins for UTES
	Numerical examples
	Conclusions
	Appendix

