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Shallow geothermal energy storage

• Shallow geothermal reservoirs are excellent candidates for energy storage
— Constant discharge of base heat, rapid discharge of heat in periods of high demand

• Recharge by circulating hot water from e.g., waste incineration
• The geological setting is typically highly complex

— horizons, (clay-filled) faults, and intertwined patterns of natural fractures— near-well region often hydraulically fractured to enhance inter-well communication

Intersecting fractures Clay-filled fault Clay sample
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• Shallow geothermal reservoirs are excellent candidates for energy storage
— Constant discharge of base heat, rapid discharge of heat in periods of high demand

• Recharge by circulating hot water from e.g., waste incineration
• The geological setting is typically highly complex

— horizons, (clay-filled) faults, and intertwined patterns of natural fractures— near-well region often hydraulically fractured to enhance inter-well communication
• To justify investments and fully utilize potential of shallow geothermal heat storage,
numerical simulation and optimization is imperative.

RCN IPN with Ruden AS: Development of digital framework for practical modelling ofgeothermal energy systems, including fractured, geological reservoirs, heat sources, heatpumps, heat exchangers, and end users
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Geothermal energy system

Q1 what parameters θ give output that matches observed data?
Q2 what are the optimal controls u that minimize cost?
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Unique prototyping platform:

• Standard data formats
• Data structures/library routines
• Fully unstructured grids
• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

www.mrst.no
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Transforming research onreservoir modelling
Unique prototyping platform:

• Standard data formats
• Data structures/library routines
• Fully unstructured grids
• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

Differentiation operators

Write discrete equations on form very close to continuous equations

∇ · H⃗ H⃗ = −(λf + λr)∇T
div(H) H = -(lambdaF + lambdaR).*grad(T)

Automatic differentiation

Combine chain rule and elementary differentiation rules by means of
operator overloading to analytically evaluate all derivatives

→ Computing Jacobians amounts to writing down residual equations.

[x,y] = initVariablesADI(1,2); z = 3*exp(-x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Large international user base:

• downloads from the whole world
• 124 master theses
• 56 PhD theses
• 400 journal papers (not by us)
• 144 proceedings papers

Numbers are from Google Scholar notifications
Used both by academia and industry

Google Analytics: access pattern for www.mrst.noPeriod: 1 July 2018 to 31 December 2019
Unique downloads: 5 516 (103 countries and 838 cities)
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The geothermal module of MRST

• Low- to medium-enthalpy systems
— Single-phase, two component H2O/NaCl— Rudimentary support for phase changes

• Applied to applications from shallow,fractured UTES (Ruden) to basin-scaleanalysis (Uni. Geneva)
• Book chapter (open access)

Collignon, M., Klemetsdal, Ø., & Møyner (2021)
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Model tuning:
Wesselkvartalet



Wesselkvartalet

• Newly constructed, mixedresidential/commercial building in the city ofAsker, Norway
• Integrates a multi-reservoir, shallow geothermalstorage facility for heating/cooling

— Three reservoirs at different depths with verydifferent properties— More than 100 wells, coupled in groups— Provides constant base load and rapid release of heatat peak loads— Heat energy in the winter to distributed deicingsystem for the city streets
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Wesselkvartalet

Here: focus on shallow reservoir only
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Wesselkvartalet – operation

Gravel layer and accumulator Wells (from above)
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Wesselkvartalet – simulation results
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Wesselkvartalet – simulation results
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Wesselkvartalet – simulation results
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Wesselkvartalet – simulation results
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Wesselkvartalet – simulation results
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Wesselkvartalet – simulation results
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• Qualitatively good match between simulated and real gravel well temperatures
• Not so good match for accumulator manifold temperatures
• Model needs parameter tuning to better fit observations
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Wesselkvartalet – model tuning

Coarse network model

• Use gradient-based optimization with manifoldtemperature mismatch as objective
• Tune coarse-grid network model with manifoldsonly (instead of full model w/ 97 wells)

— CGNet (Lie and Krogstad 2023)
• Parameters tuned: pore volumes, flow/thermaltransmissibilities, heat capacities
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Wesselkvartalet – model tuning
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• Very poor match for untuned base model
• Excellent match for tuned model on tuning data
• Very good match for tuned model on prediction data

— Remarkably good since prediction data describes twodischarge periods with reversed flow compared to tuning
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Control optimization:
Five-spot pattern



Storage in five-spot pattern

Optimal control

• Setup: heat storage in 60 × 60 × 20 m box, homogeneous perm/poro of 2 md/0.04
• Charge for specific time, then discharge to provide peak load to external application
• Objective: find injection rate/temperature that minimizes associated energy costs

geothermal
reservoir

heat
pump

el. heater
(optional)

external
heat

source

geothermal
reservoir

heat
pump

heat
delivered

Charge phase Discharge phase

el. heater
(optional)
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Storage in five-spot pattern

Optimal control – complex scenario

Complex scenario

Charge period (days) 15
Discharge period (days) 4
Energy price (NOK/kWh) 0.75 - 1.5 - 3.0
Charge: max power from source (MW) 1
Discharge: power delivery required (MW) 8
Initial reservoir temperature, T0 (°C) 10

Four strategies: no heat storage, base case storage, optimized storage with constant and varying temperature/rate
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Storage in five-spot pattern

Optimal control results – complex scenario

Rate Temperature (◦C) Cost (NOK)
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Storage in five-spot pattern

Optimal control results – complex scenario

Rate Temperature (◦C) Cost (NOK)

Base case back-of-the-envelope optimization → 30 % cost reductionStorage w/ constant controls → 45 % cost reductionStorage w/ varying controls → 52 % cost reduction
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Storage in five-spot pattern

Optimal control results – complex scenario

Rate Temperature (◦C) Cost (NOK)

∗Constantly varying rate/temperature likely not possible – adjusting at given intervals more tractable

Base case back-of-the-envelope optimization → 30 % cost reductionStorage w/ constant controls → 45 % cost reductionStorage w/ varying controls → 52 % cost reduction
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Concluding remarks

Conclusions

• Integrated framework for modelling and optimization of geothermal energy storage systems
— Based on methods from simulation of oil and gas reservoirs— Incorporates key components: reservoirs, heat sources, (heat)pumps, heat exchangers, end users— Gradient-based optimization capable of optimal control and parameter tuning

• Applicable to a range of industry-relevant cases
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Concluding remarks

Further work and discussion points

• Identify relevant objective functions for different stages of a project
Stage Goal ObjectivePlanning Justify investments Levelized cost of energyConstruction Find optimal plant configuration Heat lossOperations Find optimal controls Net present value

— To what extent is such a framework useful/reliable in the different stages?
• Model parameter tuning has only been tested for very simplified models

— Open question: can this be used to infer physical properties of the underlying system?
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Concluding remarks

For the interested

• Book chapter on geothermal modelling with MRST (open-access):Collignon, M., Klemetsdal, Ø, Møyner, O. (2021)
Simulation of Geothermal Systems Using MRST
Cambridge University Press. doi: 10.1017/9781009019781.018

• Conference paper on modelling and optimization of geothermal energy systems:Klemetsdal, Ø., Nilsen, H. Krogstad, S., Andersen, O., Bastesen, E. (2022)
Modeling and Optimization of Shallow Geothermal Heat Storage
ECMOR 2022, Sep 2022. doi: 10.3997/2214-4609.202244109

• Minisymposium on practical geothermal simulation in SIAM Geosciences:Klemetsdal, Ø, Andersen, O.
MS65: Practical Simulation of Geothermal Energy Systems2023 SIAM Conference on Mathematical & Computational Issues in the Geosciences
Bergen, June 19–22, 2023
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