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Sinrer Shallow geothermal energy storage

e Shallow geothermal reservoirs are excellent candidates for energy storage

— Constant discharge of base heat, rapid discharge of heat in periods of high demand
e Recharge by circulating hot water from e.g., waste incineration
e The geological setting is typically highly complex

— horizons, (clay-filled) faults, and intertwined patterns of natural fractures
— near-well region often hydraulically fractured to enhance inter-well communication

a8,

i

Intersecting fractures ; ‘," Clay-filled fault §
14 — > v 74

2/21



SINTEF

Shallow geothermal energy storage

e Shallow geothermal reservoirs are excellent candidates for energy storage

— Constant discharge of base heat, rapid discharge of heat in periods of high demand
e Recharge by circulating hot water from e.g., waste incineration
e The geological setting is typically highly complex

— horizons, (clay-filled) faults, and intertwined patterns of natural fractures
— near-well region often hydraulically fractured to enhance inter-well communication

e To justify investments and fully utilize potential of shallow geothermal heat storage,
numerical simulation and optimization is imperative.

RCN IPN with Ruden AS: Development of digital framework for practical modelling of
geothermal energy systems, including fractured, geological reservoirs, heat sources, heat
pumps, heat exchangers, and end users
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Sirer Geothermal energy system
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Geothermal energy system
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el Geothermal energy system
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Sirer Geothermal energy system
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Sirer Geothermal energy system
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Sirer Geothermal energy system
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Sirer Geothermal energy system
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Geothermal energy system

Intermittent Objective: Minimize cost C of delivering P W
heat source
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on
reservoir modelling

Unique prototyping platform:

e Standard data formats

Data structures/library routines

Fully unstructured grids

Rapid prototyping:

Differentiation operators
- Automatic differentiation
Object-oriented framework
State functions WWW.mrst.no

Industry-standard simulation
4/ 21


http://www.mrst.no
www.mrst.no

Differentiation operators

MATLAB Reservoir
Simulation Toolbox (MRST) Write discrete equations on form very close to continuous equations

Transforming research on V-H H=—(\+\)VT
reservoir modelling div(H) H = -(lambdaF + lambdaR).*grad(T)

Unique prototyping platform:

Standard data formats

Data structures/library routines

Fully unstructured grids

Rapid prototyping:

Differentiation operators

- Automatic differentiation
Object-oriented framework
State functions

Industry-standard simulation
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. Differentiation operators
MATLAB Reservoir

Simulation Toolbox (MRST) Write discrete equations on form very close to continuous equations

Transforming research on V-H H=—(\+\)VT
reservoir modelling div(H) H = -(lambdaF + lambdaR).*grad(T)

J

Unique prototyping p|atform;

Combine chain rule and elementary differentiation rules by means of
e Standard data formats operator overloading to analytically evaluate all derivatives

— Computing Jacobians amounts to writing down residual equations.

Data structures/library routines
[x,y] = initVariablesADI(1,2); z = 3%exp(-x*y)

e Fully unstructured grids
X = ADI Properties: y = ADI Properties: z = ADI Properties:
. . val: 1 val: 2 val: 0.4060

¢ Rapid prototyping: jecs I3 Ig1Y jaci 1091 13> jac: {L-0.8120] [-0.4060)

- Differentiation operators N / \ / \

- Automatic differentiation 1 o 04 9z

. ) oz dy oz dy @ |e=n = Y lz=1,y=2

- Object-oriented framework

- State functions
e Industry-standard simulation
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research on
reservoir modelling

Large international user base:
e downloads from the whole world

e 124 master theses

56 PhD theses
e 400 journal papers (not by us)
e 144 proceedings papers

Numbers are from Google Scholar notifications

Used both by academia and industry

. 638

Google Analytics: access pattern for www.mrst .no
Period: 1 July 2018 to 31 December 2019
Unique downloads: 5 516 (103 countries and 838 cities)
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SF The geothermal module of MRST

e Low- to medium-enthalpy systems
— Single-phase, two component HyO/NaCl
— Rudimentary support for phase changes
e Applied to applications from shallow,
fractured UTES (Ruden) to basin-scale
analysis (Uni. Geneva)
e Book chapter (open access)
Collignon, M., Klemetsdal, @., & Mgyner (2021)
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https://doi.org/10.1017/9781009019781.018

SINTEF

Model tuning:
Wesselkvartalet




SINTEF Wesselkvartalet

e Newly constructed, mixed
residential/commercial building in the city of
Asker, Norway

e Integrates a multi-reservoir, shallow geothermal
storage facility for heating/cooling

— Three reservoirs at different depths with very
different properties

— More than 100 wells, coupled in groups

— Provides constant base load and rapid release of heat
at peak loads

— Heat energy in the winter to distributed deicing
system for the city streets
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SINTEF Wesselkvartalet

Wessel building
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Il Wesselkvartalet - operation
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Sirer Wesselkvartalet - simulation results
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Sirer Wesselkvartalet - simulation results
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Sirer Wesselkvartalet - simulation results

IIII\Ilﬂ‘quuuu!‘ j] (Il “ }
nll” E:xunul”” “ 1l : s

10

Matrix and fracture temperature (°C), August 28

10/21



Sirer Wesselkvartalet - simulation results
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Wesselkvartalet - simulation results

SINTEF
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Sirer Wesselkvartalet - simulation results
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Sirer Wesselkvartalet - simulation results
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Sirer Wesselkvartalet - simulation results

Temperature (°C)
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Tk

Coarse network model

Wesselkvartalet - model tuning

e Use gradient-based optimization with manifold
temperature mismatch as objective

e Tune coarse-grid network model with manifolds
only (instead of full model w/ 97 wells)
— CGNet (Lie and Krogstad 2023)

e Parameters tuned: pore volumes, flow/thermal
transmissibilities, heat capacities
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Wesselkvartalet

model tuning
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Wesselkvartalet - model tuning
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e Excellent match for tuned model on tuning data

e Very good match for tuned model on

— Remarkably good since

describes two

discharge periods with reversed flow compared to tuning

40

30

20

Temperature

Temperature

13/ 21



SINTEF

Control optimization:
Five-spot pattern




SInTEF Storage in five-spot pattern

Optimal control
e Setup: heat storage in 60 x 60 x 20 m box, homogeneous perm/poro of 2 md/0.04
e Charge for specific time, then discharge to provide peak load to external application

e Objective: find injection rate/temperature that minimizes associated energy costs

Charge phase Discharge phase
Y o]
> (optional) [ > [ (optional)
EARAAAA VA
external heat geothermal geothermal heat heat
heat pump) reservoir reservoir pump delivered
source
E— T
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SInTEF Storage in five-spot pattern

Optimal control - complex scenario

Charge period (days) 15
Discharge period (days) 4
Energy price (NOK/kWh) 075-15-3.0
Charge: max power from source (MW) 1
Discharge: power delivery required (MW) 8
Initial reservoir temperature, T (°C) 10
Four strategies: no heat storage, base case storage, optimized storage with constant and temperature/rate
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Storage in five-spot pattern

Optimal control results - complex scenario
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Storage in five-spot pattern

Optimal control results - complex scenario
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SInTEF Storage in five-spot pattern

Optimal control results - complex scenario

Rate Temperature (°C) Cost (NOK)
6000 0 : 2000
| ‘ N = p—
4000 | | ‘Storage (optimized, time-varying controls)
2000 305 i 1600
0 Base case back-of-the-envelope optimization — 30 % cost reduction
2000 Storage w/ constant controls — 45 % cost reduction
4000 — 52 % cost reduction
6000
600
8000 /RN a0
000 e e, consancotts N I Eptited coe, constan conrts i -
—IZODDD 2 4 6 8 10 12 16 18 20 ZESU 2 4 6 8 10 12 ' 16 18 20 UU 2 4 6 8 10 12 16 18 20
Time [days] Time [days] Time [days]
*Constantly likely not possible - adjusting at given intervals more tractable
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Sirer Concluding remarks

Conclusions

¢ Integrated framework for modelling and optimization of geothermal energy storage systems

— Based on methods from simulation of oil and gas reservoirs
— Incorporates key components: reservoirs, heat sources, (heat)pumps, heat exchangers, end users
— Gradient-based optimization capable of optimal control and parameter tuning

e Applicable to a range of industry-relevant cases
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Bl Concluding remarks

Further work and discussion points

¢ |dentify relevant objective functions for different stages of a project

Planning Justify investments Levelized cost of energy
Construction | Find optimal plant configuration | Heat loss
Operations Find optimal controls Net present value

— To what extent is such a framework useful/reliable in the different stages?

e Model parameter tuning has only been tested for very simplified models

— Open question: can this be used to infer physical properties of the underlying system?
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Sirer Concluding remarks

For the interested

e Book chapter on geothermal modelling with MRST (open-access):
Collignon, M., Klemetsdal, @, Mgyner, O. (2021)
Simulation of Geothermal Systems Using MRST

Cambridge University Press. doi: 10.1017/9781009019781.018

e Conference paper on modelling and optimization of geothermal energy systems:
Klemetsdal, @., Nilsen, H. Krogstad, S., Andersen, O., Bastesen, E. (2022)
Modeling and Optimization of Shallow Geothermal Heat Storage

ECMOR 2022, Sep 2022. doi: 10.3997/2214-4609.202244109

e Minisymposium on practical geothermal simulation in SIAM Geosciences:
Klemetsdal, @, Andersen, O.
MSé5: Practical Simulation of Geothermal Energy Systems
2023 SIAM Conference on Mathematical & Computational Issues in the Geosciences

Bergen, June 19-22, 2023
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