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Introduction

� Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...

� Simulation models often upscaled → polyhedral cells with full-tensor permeability

Industry-standard two-point flux approximation is generally not consistent

Low permeability

Thin cells

Internal gap

Non-matching faces

Twisted grid

Many neighbors Degenerate cells

� Much research devoted to develop consistent methods

� ... yet very few are actually part of the reservoir engineering toolbox

In this work: Compare representative set of consistent methods within the same
framework (MRST) with emphasis on robustness and computational efficiency
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Consistent discretizations

� Incompressible, singe-phase, porous media flow

∇ · ~v = q, where
︷ ︸︸ ︷
~v = −K∇p

� Finite volume method: divide into cells Ωi , integrate + divergence theorem∫
∂Ωi

~v · ~n ds =

∫
Ωi

q dx , or
∑

j∈neigh(i)

vij = qi

Methods differ in how they approximate intercell fluxes vij

Darcy velocity sources/sinks permeability pressure

Darcy’s law
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Consistent discretizations

Local conservation of mass

� Total mass flux across ∂Ωi must equal net charge of fluids inside Ωi (vij = −vji )

Consistency

� Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

� Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Robustness and flexibility

� ... to cope with the continued surge in complexity of geomodels

Computational efficiency

� Cost of assembling and solving the linear(ized) systems
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Consistent discretizations

� TPFA: two-point expression vij = Tij(pi − pj)

• Monotone, only consistent for K-orthogonal grids

� NTPFA: nonlinear stencil vi,j = Ti,j(p)pi − Tj,i (p)pj

• Consistent and monotone, but nonlinear ...

� MPFA: wider stencil accounts for ∇p-components
parallel to faces – here: MPFA-O

• Consistent, but not always monotone

� MFD: hybrid formulation, free stabilization parameter

• Consistency by more unknowns, not monotone

� VEM: FEM-type discretization for polytopal grids

• Consistent, not monotone, here: non-conservative

ci,j Γi,j

Ωi Ωj

ni,jpi
pjπi,j
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Consistent discretizations

V V

Rn Rn

A

Ah

dof dof

p q

p q

dof Cell Face Node
TPFA 3 7 7

NTPFA 3 7 7

MPFA 3 7 7

MFD 3 3 7

VEM 3(2nd) 3(2nd) 3

Ah Conservative Consistent Monotone Linear Higher-order
TPFA 3 7 3 3 7

NTPFA 3 3 3 7 7

MPFA 3 3 7 3 7

MFD 3 3 7 3 3

VEM 7 3 7 3 3

Ω

Ω
Ωi

6 / 19



Example 1: Monotonicity

point source

K

zero pressure

Kx/Ky = 500
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Example 1: Monotonicity

0 5 10 15 20 25 30 35 40 45

MFD

MPFA

NTPFA

TPFA

VEM1

Fraction of cells with negative pressure (%)

Magnitude of negative pressure

0 1 2 3 4 5 6 7

MFD

MPFA

NTPFA

TPFA

VEM2

VEM1

VEM2

Method dofs nnz ratio cond

TPFA cells 2601 12801 4.92 1.45e+03

NTPFA cells 2601 17208 6.62 2.83e+03

MPFA cells + outer faces 3009 23209 7.71 1.69e+03

MFD faces 5100 35096 6.88 7.01e+03

VEM1 vertices 2704 22704 8.40 5.08e+04

VEM2 cells + faces + vertices 10609 162817 15.35 1.07e+06

Higher-order VEM significantly better than the other linear methods,

but also significantly more expensive
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Example 2: Near-well simulation

Permeability x-component Setup

� Permeability anisotropy Kx/Ky = 3, rotated by π/6 in xy -plane

� Well injects 1 PV over 0.1 years, no-flow on top/bottom, fixed pressure on vertical sides

Vertical well

Intersecting fractures
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Example 2: Near-well simulation
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Example 2: Near-well simulation

Method dof nnz ratio cond

TPFA 2 465 19 809 8.04 1.11e+04

NTPFA 2 465 33 608 13.63 3.26e+05

MPFA 8 507 98 579 11.59 6.74e+04

MFD 9 658 130 438 13.51 2.94e+09

VEM1 5 274 170 618 32.35 2.22e+11

VEM2 30 173 2 495 409 82.70 1.44e+12

Differences observed in 2D are even more severe in 3D
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Example 3: Multiphase flow

Full model Subset of model

SAIGUP study: Geomodel of shallow-marine oil reservoir with several major faults and
mud-rapes, posed on cornerpoint grid (Manzocchi et al. [2008])
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Example 3: Multiphase flow

TPFA MFD VEM1 VEM2

pressure

saturation

VEM solutions differ significantly
due to postprocessing of fluxes
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Example 3: Multiphase flow

Mean water cut vs. time
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� TPFA: larger saturation along injection boundary, and earlier breakthrough

� Up to 15% difference between pressures, also for consistent methods

• VEM postprocessing before transport may introduce artifacts in flow field
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Example 3: Multiphase flow

Condition number vs. time
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Conclusions

� TPFA inconsistent, grid effects, but monotone and
matrices with low condition numbers

� Consistent methods: convergent, less grid effects,
but monotonicity issues and denser, more
ill-conditioned matrices

� MFD easy to implement, flexible wrt. grids, but not
cell centered

� MPFA more difficult to implement and challenged
by co-planar surface patches

� NTPFA promising, but not yet sufficiently robust

mrst.no

Paper source code and more examples:

git@bitbucket.org:strene/ 0
compare-elliptic.git
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Conclusions

General advice

� Use multiple consistent methods to assess error from
anisotropic permeability and grid orientation

Further work

� Multiphase: use flow diagnostics tools

• sweep, drainage regions, well pairs, TOF, etc.
• #/size of connected components in flux graph

� Effect on linear and nonlinear solver performance

� How does discretization affect transport solver?
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