

A Comparison of Consistent Discretizations for Elliptic Problems on Polyhedral Grids

Øystein S. Klemetsdal Olav Møyner Xavier Raynaud Knut-Andreas Lie

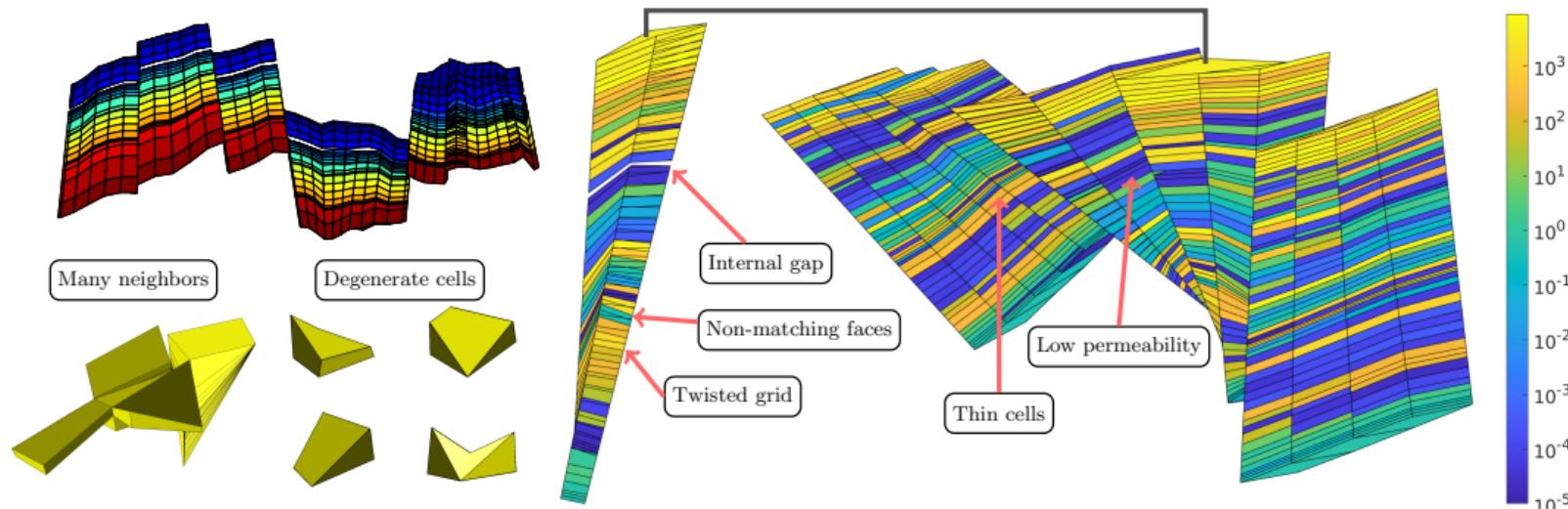
Department of Mathematics and Cybernetics, SINTEF Digital, Norway

FVCA 9 – Finite Volumes for Complex Applications IX
June 15-19, 2020 Bergen, Norway

Introduction

- Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...
- Simulation models often upscaled → polyhedral cells with full-tensor permeability

Industry-standard two-point flux approximation is generally *not consistent*



- Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...
- Simulation models often upscaled → polyhedral cells with full-tensor permeability
Industry-standard two-point flux approximation is generally *not consistent*

OLD NEWS!

Introduction

- Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...
- Simulation models often upscaled → polyhedral cells with full-tensor permeability
Industry-standard two-point flux approximation is generally *not consistent*
- Much research devoted to develop consistent methods

Introduction

- Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...
- Simulation models often upscaled → polyhedral cells with full-tensor permeability
Industry-standard two-point flux approximation is generally *not consistent*
- Much research devoted to develop consistent methods
- ... yet very few are actually part of the reservoir engineering toolbox

Introduction

- Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...
- Simulation models often upscaled → polyhedral cells with full-tensor permeability
Industry-standard two-point flux approximation is generally *not consistent*
- Much research devoted to develop consistent methods
- ... yet very few are actually part of the reservoir engineering toolbox

In this work: Compare representative set of consistent methods within the same framework (MRST) with emphasis on robustness and computational efficiency

Consistent discretizations

- Incompressible, single-phase, porous media flow

$$\nabla \cdot \vec{v} = q, \quad \text{where} \quad \vec{v} = -\mathbf{K} \nabla p$$

Diagram illustrating the components of the equations:

- Darcy velocity** is associated with \vec{v} .
- sources/sinks** is associated with q .
- Darcy's law** is associated with $\vec{v} = -\mathbf{K} \nabla p$.
- permeability** is associated with \mathbf{K} .
- pressure** is associated with p .

Consistent discretizations

- Incompressible, single-phase, porous media flow

$$\nabla \cdot \vec{v} = q, \quad \text{where} \quad \vec{v} = -\mathbf{K} \nabla p$$

Diagram illustrating the components of the equations:

- Darcy velocity** is associated with \vec{v} .
- sources/sinks** is associated with q .
- permeability** is associated with \mathbf{K} .
- pressure** is associated with p .

Darcy's law is shown as a box above the velocity equation, with an arrow pointing down to the \vec{v} term.

- Finite volume method: divide into cells Ω_i , integrate + divergence theorem

$$\int_{\partial\Omega_i} \vec{v} \cdot \vec{n} \, ds = \int_{\Omega_i} q \, dx, \quad \text{or} \quad \sum_{j \in \text{neigh}(i)} v_{ij} = q_i$$

Consistent discretizations

- Incompressible, single-phase, porous media flow

$$\nabla \cdot \vec{v} = q, \quad \text{where} \quad \vec{v} = -\mathbf{K} \nabla p$$

Diagram illustrating the components of the flow equation:

- Darcy velocity (\vec{v}) is shown as a vector pointing downwards.
- sources/sinks (q) is shown as a vector pointing upwards.
- permeability (\mathbf{K}) is shown as a vector pointing downwards.
- pressure (p) is shown as a vector pointing upwards.

Darcy's law is shown in a box at the top right, with an arrow pointing to the \vec{v} term in the equation.

- Finite volume method: divide into cells Ω_i , integrate + divergence theorem

$$\int_{\partial\Omega_i} \vec{v} \cdot \vec{n} \, ds = \int_{\Omega_i} q \, dx, \quad \text{or} \quad \sum_{j \in \text{neigh}(i)} \mathbf{v}_{ij} = q_i$$

Methods differ in how they approximate intercell fluxes \mathbf{v}_{ij}

Local conservation of mass

- Total mass flux across $\partial\Omega_i$ must equal net charge of fluids inside Ω_i ($v_{ij} = -v_{ji}$)

Local conservation of mass

- Total mass flux across $\partial\Omega_i$ must equal net charge of fluids inside Ω_i ($v_{ij} = -v_{ji}$)

Consistency

- Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Local conservation of mass

- Total mass flux across $\partial\Omega_i$ must equal net charge of fluids inside Ω_i ($v_{ij} = -v_{ji}$)

Consistency

- Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

- Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Local conservation of mass

- Total mass flux across $\partial\Omega_i$ must equal net charge of fluids inside Ω_i ($v_{ij} = -v_{ji}$)

Consistency

- Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

- Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Robustness and flexibility

- ... to cope with the continued surge in complexity of geomodels

Local conservation of mass

- Total mass flux across $\partial\Omega_i$ must equal net charge of fluids inside Ω_i ($v_{ij} = -v_{ji}$)

Consistency

- Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

- Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Robustness and flexibility

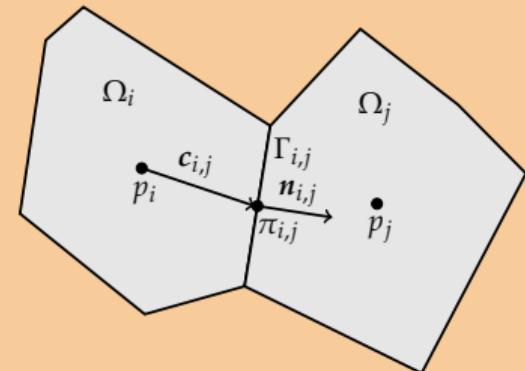
- ... to cope with the continued surge in complexity of geomodels

Computational efficiency

- Cost of assembling and solving the linear(ized) systems

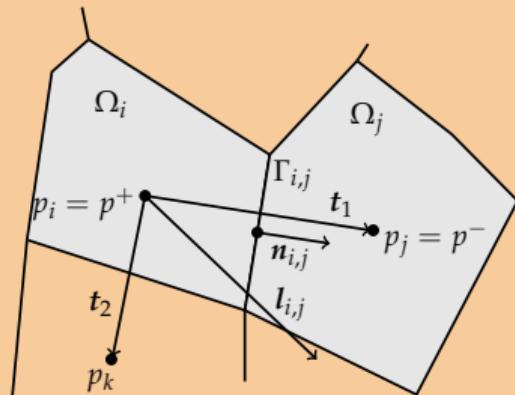
Consistent discretizations

- TPFA: two-point expression $v_{ij} = T_{ij}(p_i - p_j)$
 - Monotone, only consistent for K-orthogonal grids



Consistent discretizations

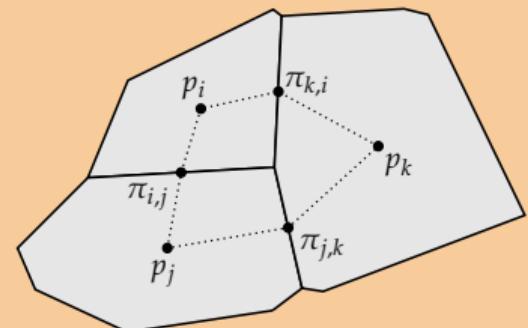
- TPFA: two-point expression $v_{ij} = T_{ij}(p_i - p_j)$
 - Monotone, only consistent for K-orthogonal grids
- NTPFA: nonlinear stencil $v_{i,j} = T_{i,j}(p)p_i - T_{j,i}(p)p_j$
 - Consistent and monotone, but nonlinear ...



(Nikitin et al. [2014], Lipnikov et al. [2007],
Le Potier [2009], Schneider et al. [2018], ...)

Consistent discretizations

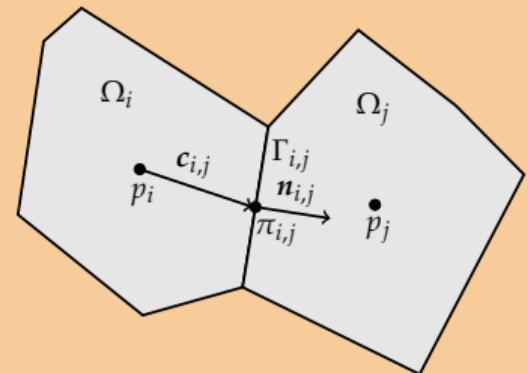
- TPFA: two-point expression $v_{ij} = T_{ij}(p_i - p_j)$
 - Monotone, only consistent for K-orthogonal grids
- NTPFA: nonlinear stencil $v_{i,j} = T_{i,j}(p)p_i - T_{j,i}(p)p_j$
 - Consistent and monotone, but nonlinear ...
- MPFA: wider stencil accounts for ∇p -components parallel to faces – here: MPFA-O
 - Consistent, but not always monotone



(Aavatsmark [2002], Edwards and Rogers [1994], Keilegavlen and Aavatsmark [2011], ...)

Consistent discretizations

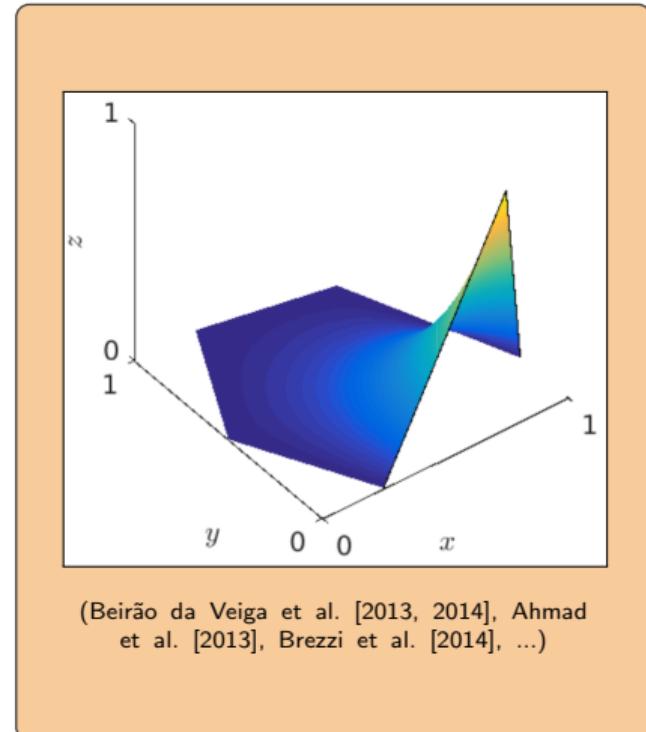
- TPFA: two-point expression $v_{ij} = T_{ij}(p_i - p_j)$
 - Monotone, only consistent for K-orthogonal grids
- NTPFA: nonlinear stencil $v_{i,j} = T_{i,j}(p)p_i - T_{j,i}(p)p_j$
 - Consistent and monotone, but nonlinear ...
- MPFA: wider stencil accounts for ∇p -components parallel to faces – here: MPFA-O
 - Consistent, but not always monotone
- MFD: hybrid formulation, free stabilization parameter
 - Consistency by more unknowns, not monotone



(Brezzi et al. [2005b], Lipnikov et al. [2009], Lie et al. [2012], da Veiga et al. [2014], ...)

Consistent discretizations

- TPFA: two-point expression $v_{ij} = T_{ij}(p_i - p_j)$
 - Monotone, only consistent for K-orthogonal grids
- NTPFA: nonlinear stencil $v_{i,j} = T_{i,j}(p)p_i - T_{j,i}(p)p_j$
 - Consistent and monotone, but nonlinear ...
- MPFA: wider stencil accounts for ∇p -components parallel to faces – here: MPFA-O
 - Consistent, but not always monotone
- MFD: hybrid formulation, free stabilization parameter
 - Consistency by more unknowns, not monotone
- VEM: FEM-type discretization for polytopal grids
 - Consistent, not monotone, here: non-conservative



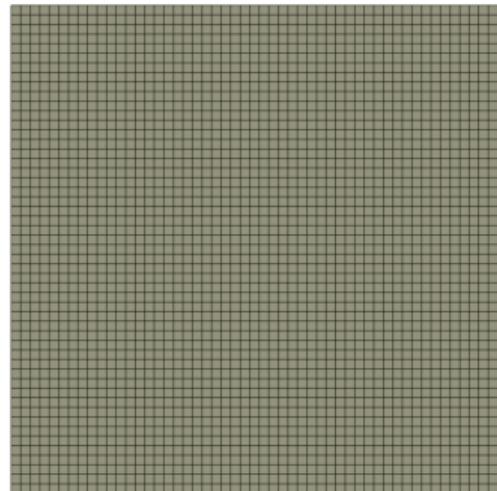
Consistent discretizations

dof	Cell	Face	Node
TPFA	✓	✗	✗
NTPFA	✓	✗	✗
MPFA	✓	✗	✗
MFD	✓	✓	✗
VEM	✓(2nd)	✓(2nd)	✓

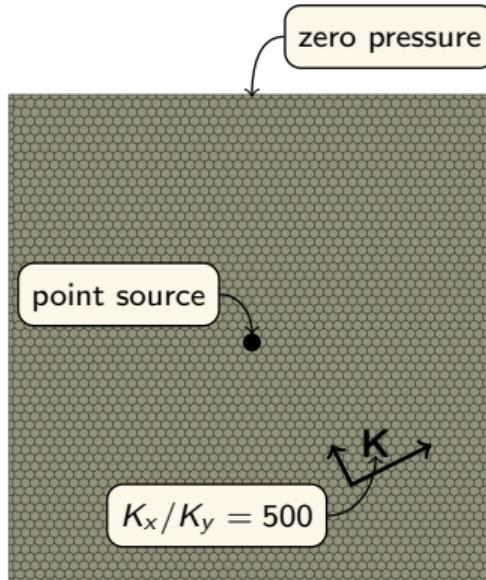


\mathcal{A}_h	Conservative	Consistent	Monotone	Linear	Higher-order
TPFA	✓	✗	✓	✓	✗
NTPFA	✓	✓	✓	✗	✗
MPFA	✓	✓	✗	✓	✗
MFD	✓	✓	✗	✓	✓
VEM	✗	✓	✗	✓	✓

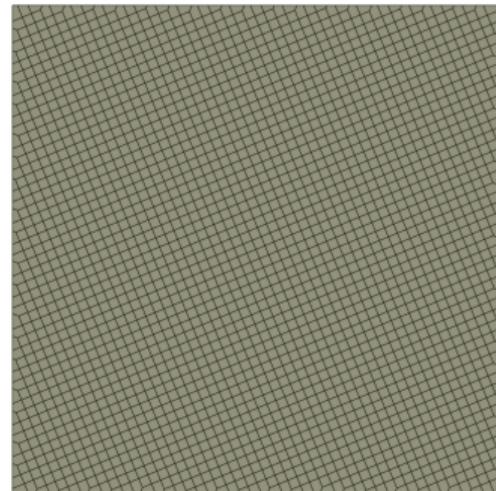
Example 1: Monotonicity



Cartesian grid

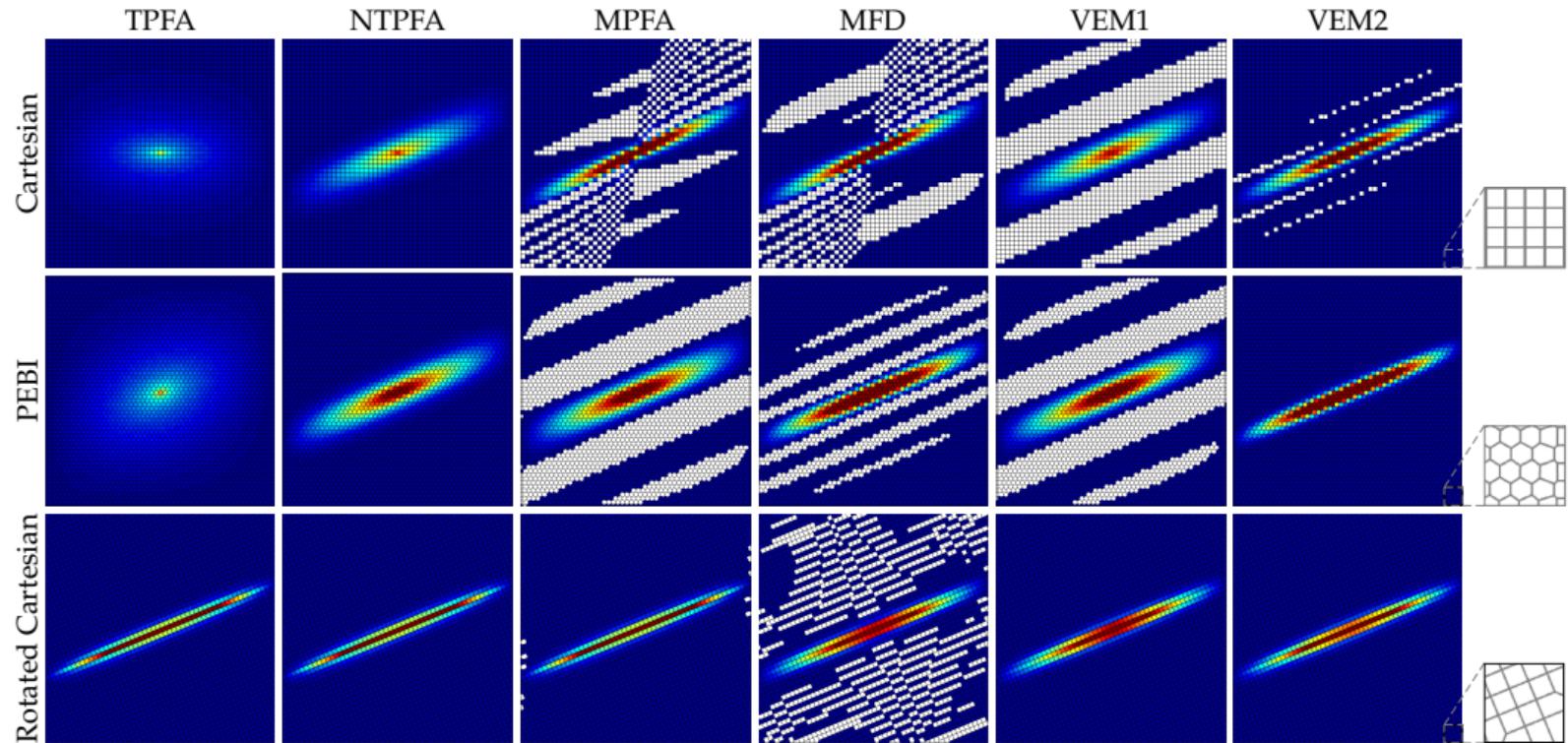


PEBI grid

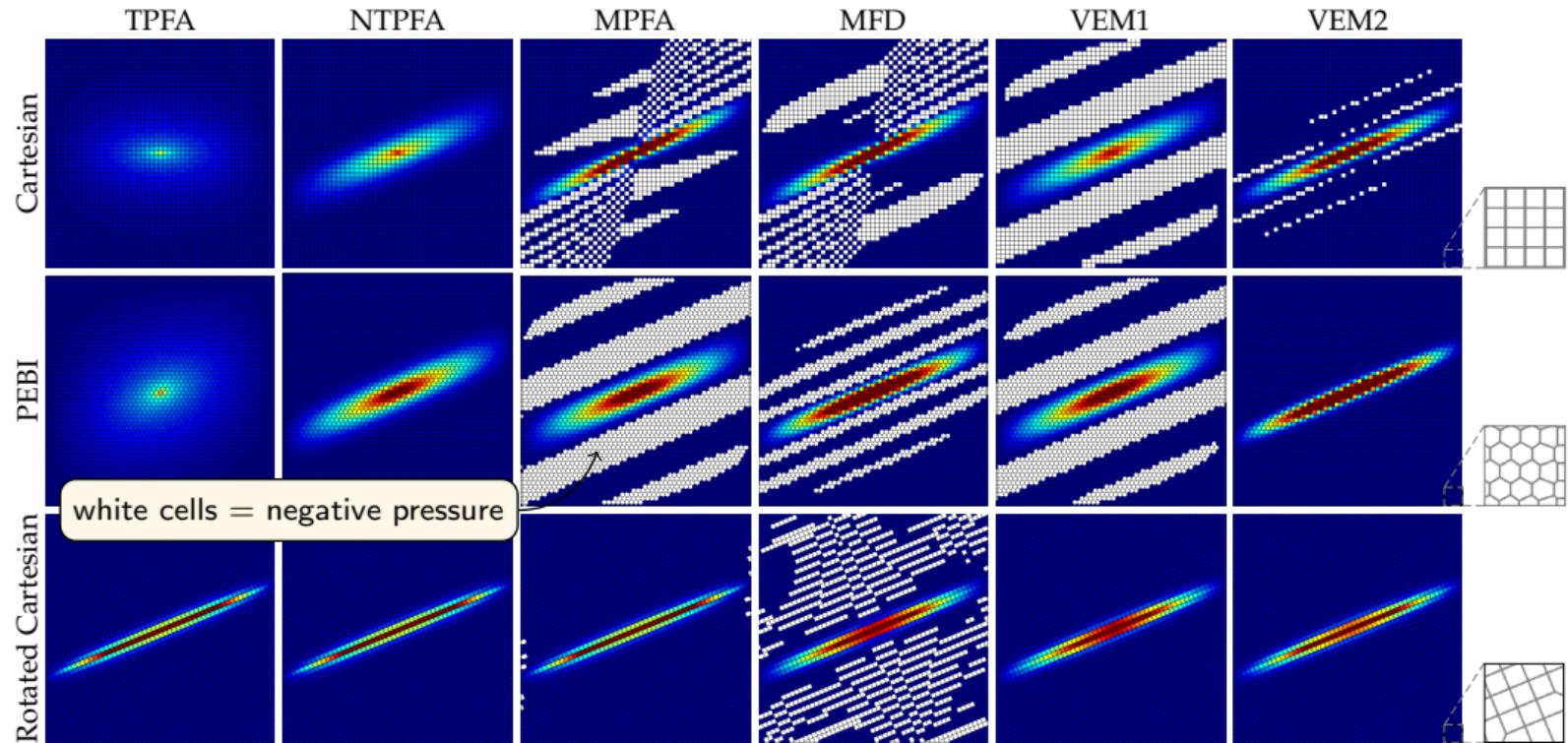


Rotated Cartesian grid

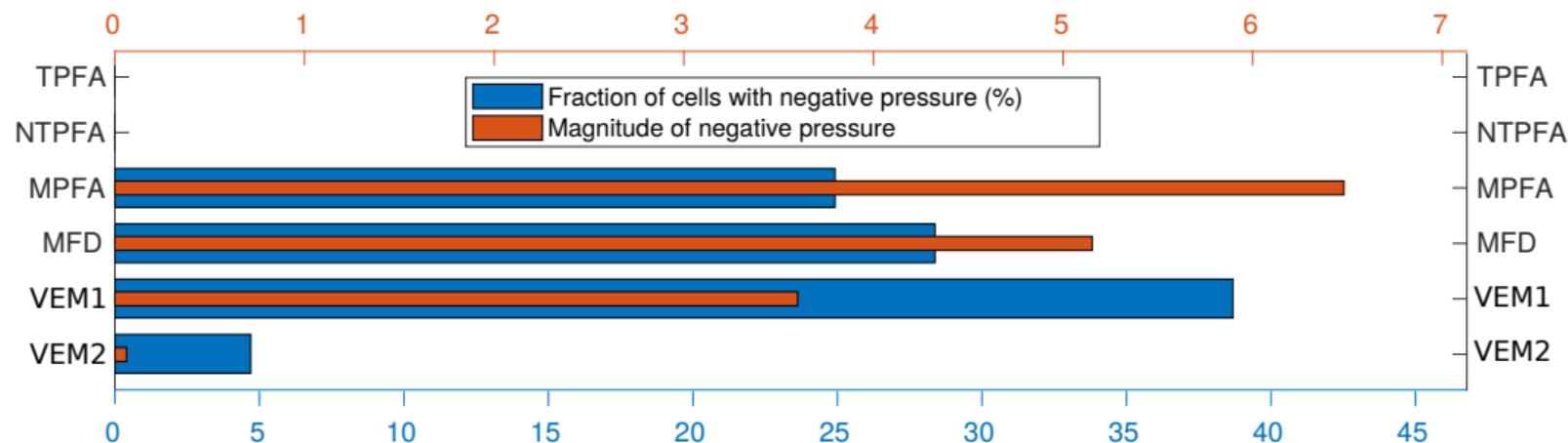
Example 1: Monotonicity



Example 1: Monotonicity



Example 1: Monotonicity



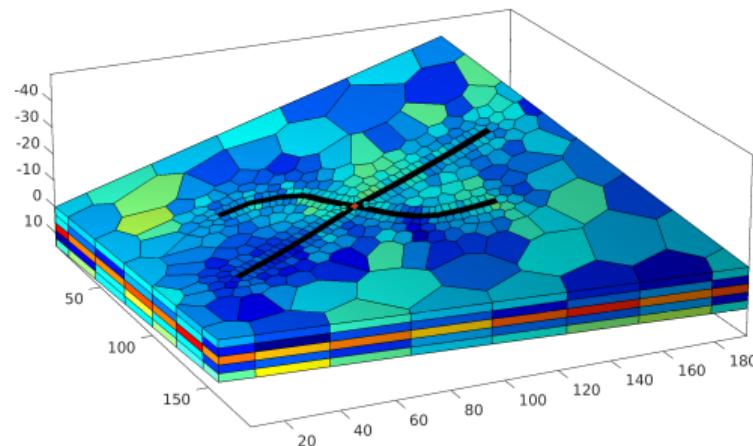
Higher-order VEM significantly better than the other linear methods,

Example 1: Monotonicity

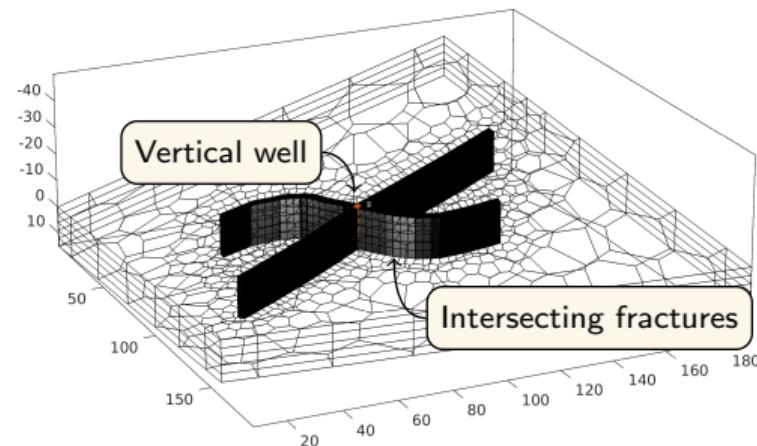
Method	dofs	nnz	ratio	cond
TPFA	cells	2601	12801	4.92
NTPFA	cells	2601	17208	6.62
MPFA	cells + outer faces	3009	23209	7.71
MFD	faces	5100	35096	6.88
VEM1	vertices	2704	22704	8.40
VEM2	cells + faces + vertices	10609	162817	15.35

Higher-order VEM significantly better than the other linear methods,
but also significantly more expensive

Example 2: Near-well simulation



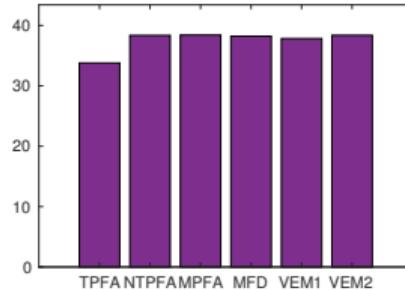
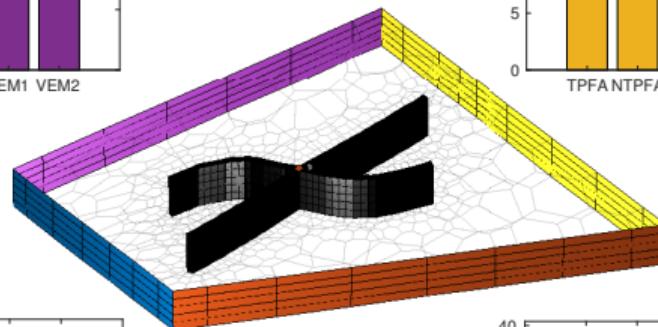
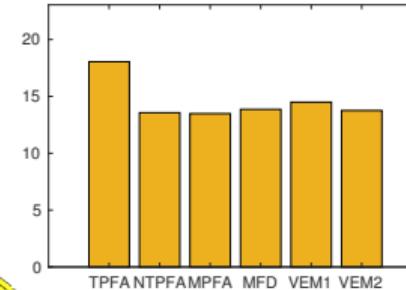
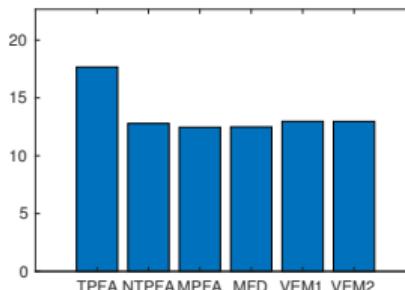
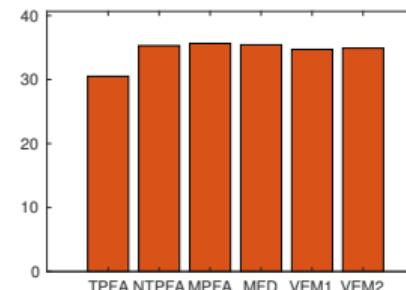
Permeability x -component



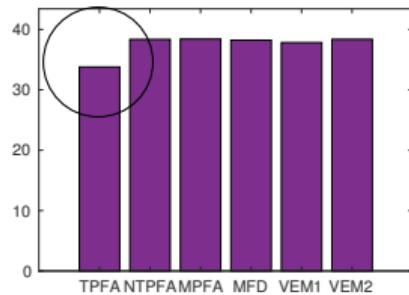
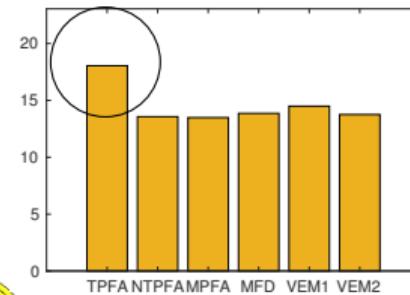
Setup

- Permeability anisotropy $K_x/K_y = 3$, rotated by $\pi/6$ in xy -plane
- Well injects 1 PV over 0.1 years, no-flow on top/bottom, fixed pressure on vertical sides

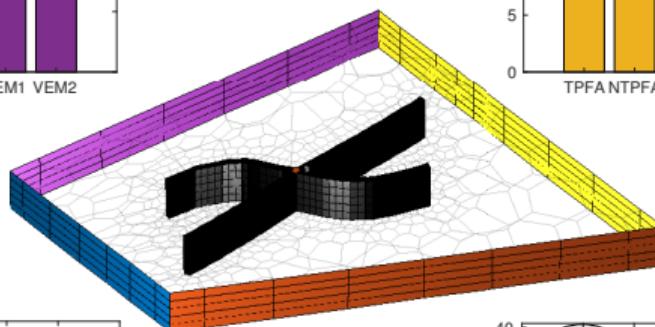
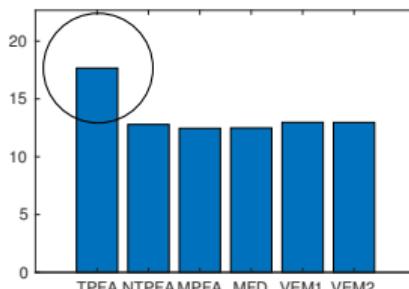
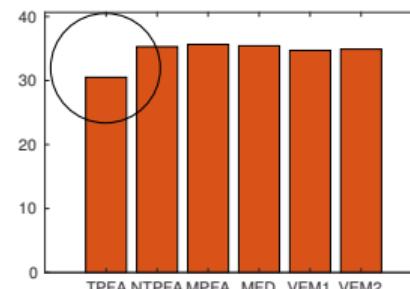
Example 2: Near-well simulation



Example 2: Near-well simulation

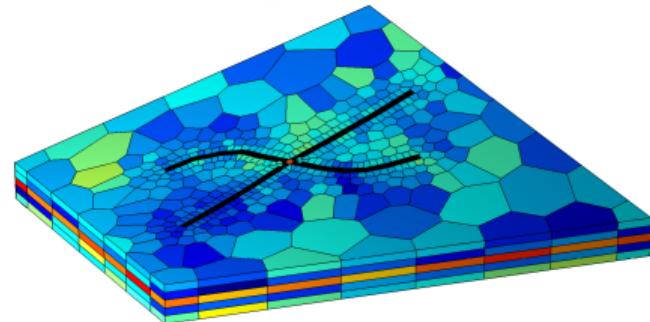


TPFA flux differs significantly from consistent methods



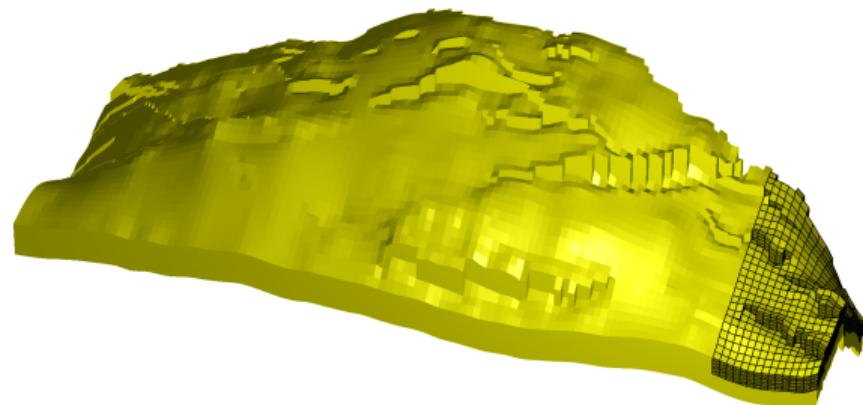
Example 2: Near-well simulation

Method	dof	nnz	ratio	cond
TPFA	2 465	19 809	8.04	1.11e+04
NTPFA	2 465	33 608	13.63	3.26e+05
MPFA	8 507	98 579	11.59	6.74e+04
MFD	9 658	130 438	13.51	2.94e+09
VEM1	5 274	170 618	32.35	2.22e+11
VEM2	30 173	2 495 409	82.70	1.44e+12

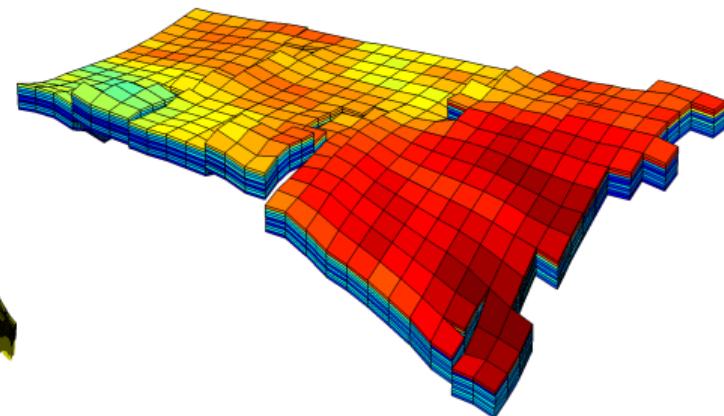


Differences observed in 2D are even more severe in 3D

Example 3: Multiphase flow



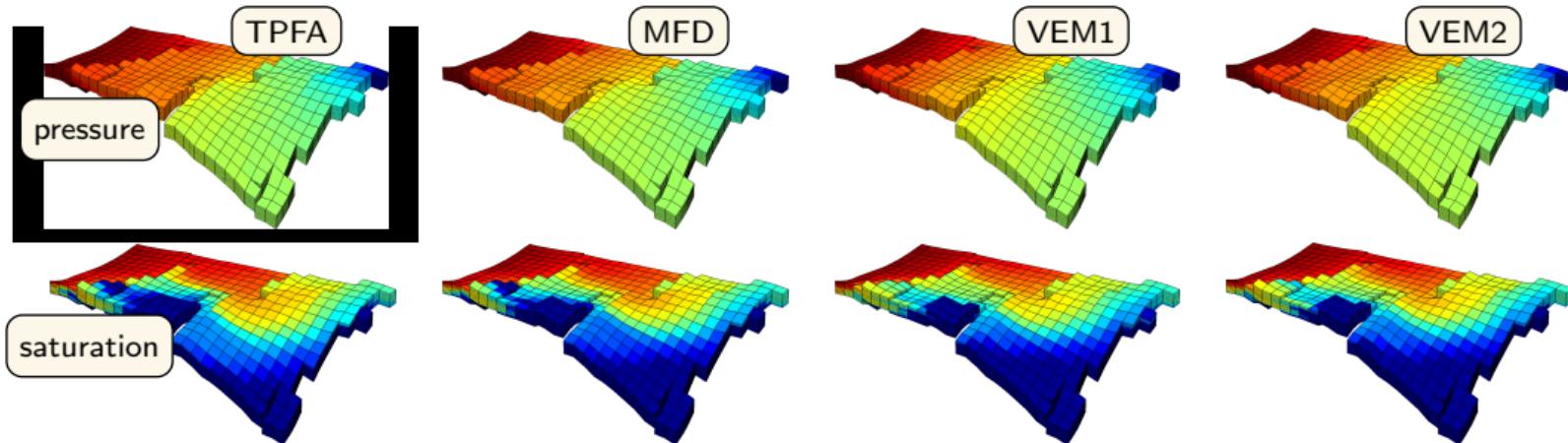
Full model



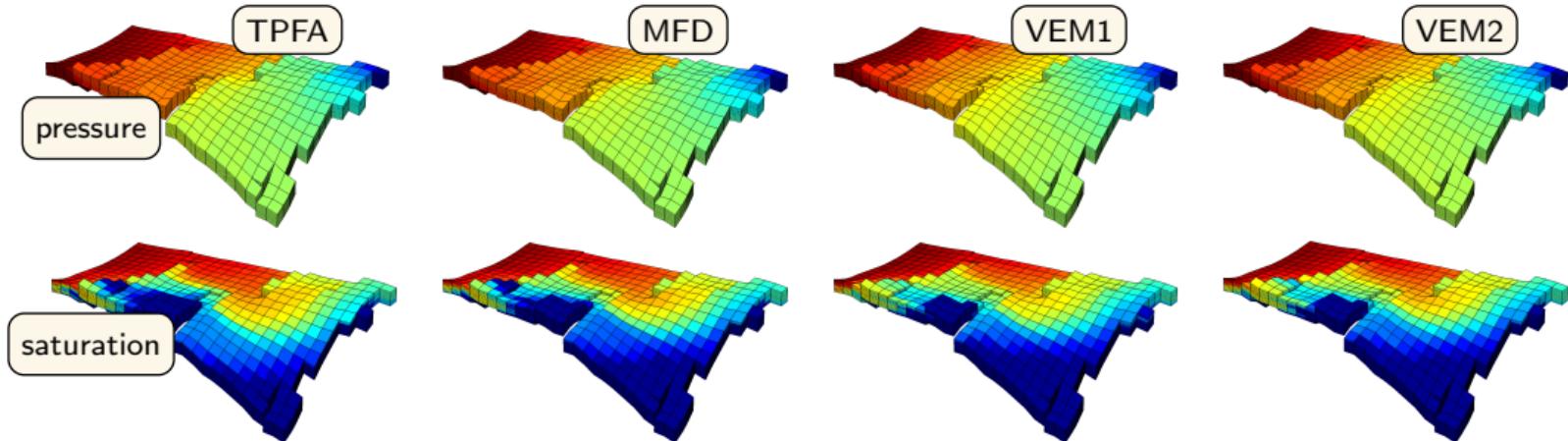
Subset of model

SAIGUP study: Geomodel of shallow-marine oil reservoir with several major faults and mud-rapes, posed on cornerpoint grid (Manzocchi et al. [2008])

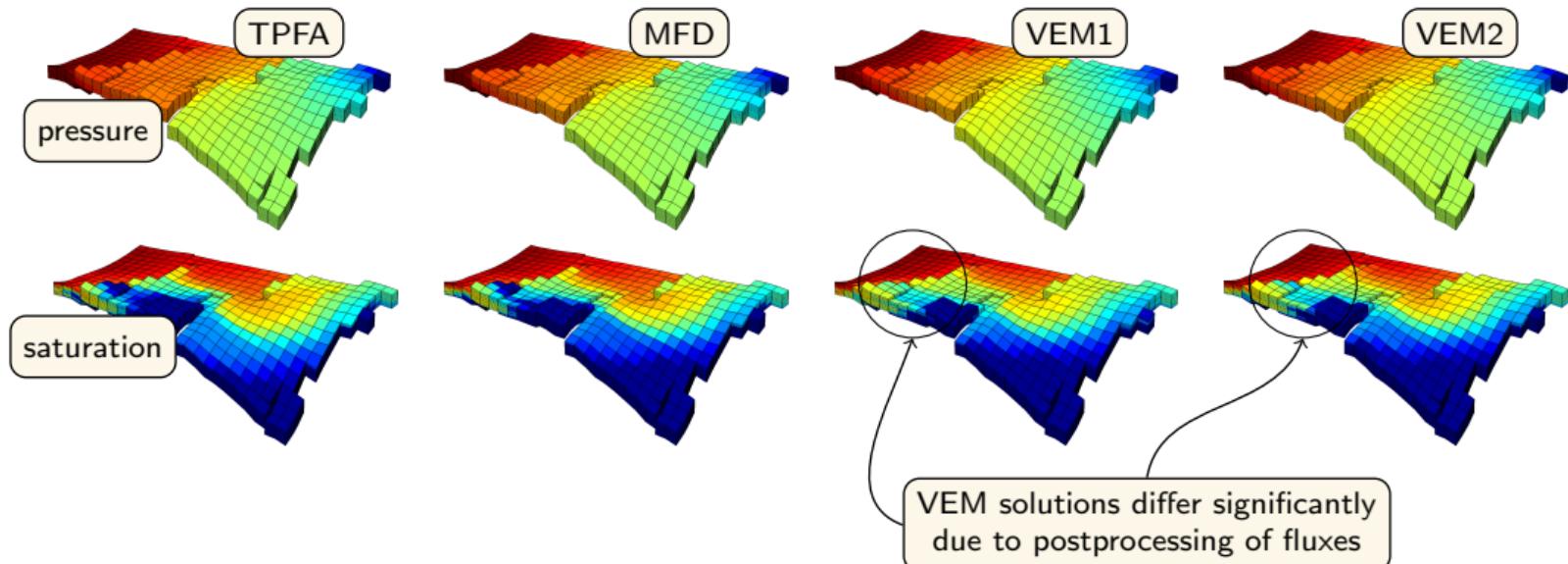
Example 3: Multiphase flow



Example 3: Multiphase flow

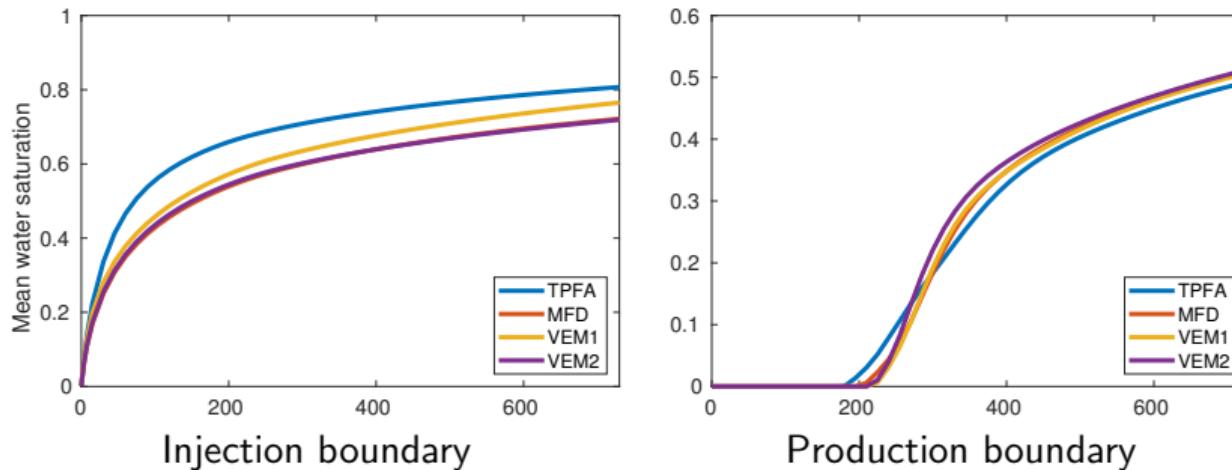


Example 3: Multiphase flow



Example 3: Multiphase flow

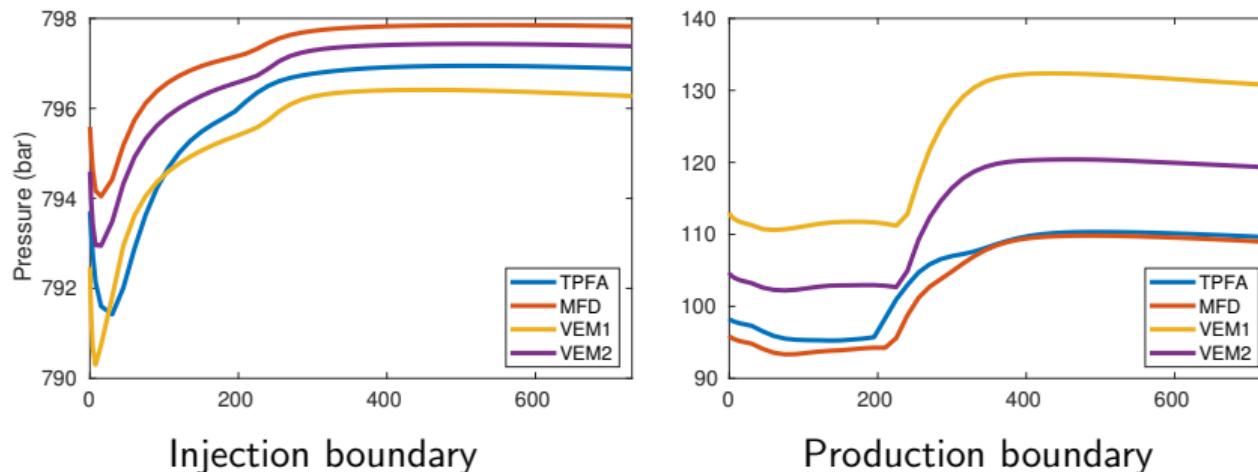
Mean water cut vs. time



- TPFA: larger saturation along injection boundary, and earlier breakthrough

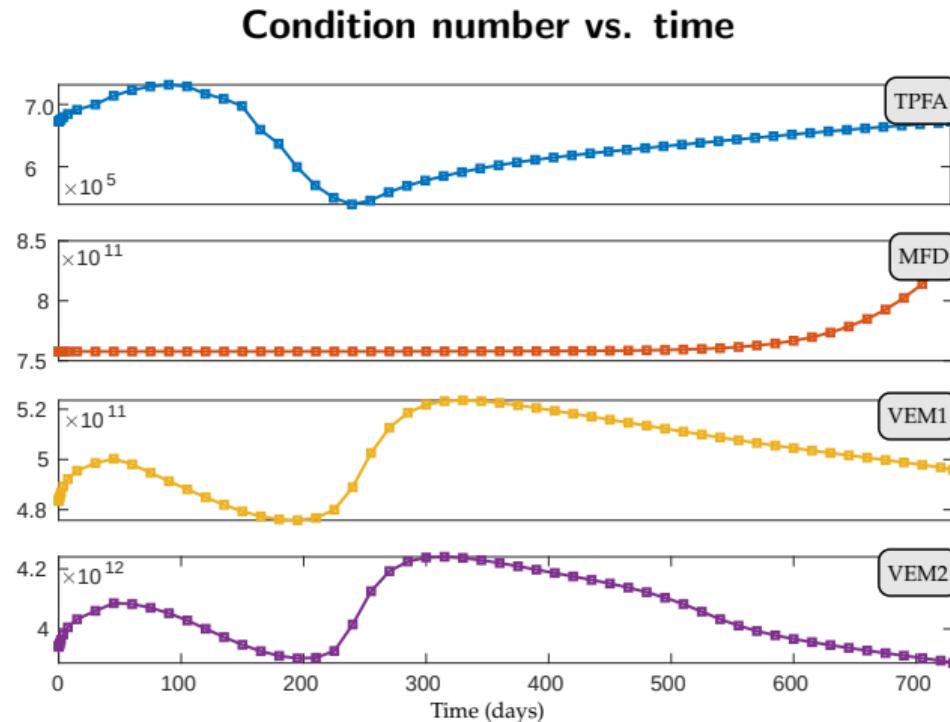
Example 3: Multiphase flow

Mean pressure vs. time



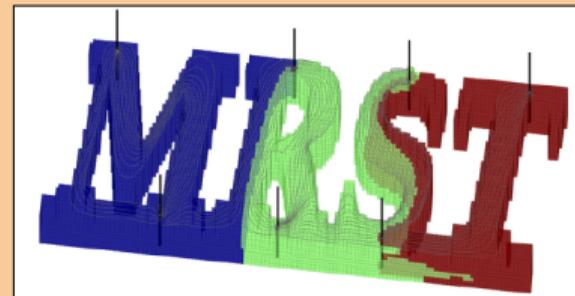
- TPFA: larger saturation along injection boundary, and earlier breakthrough
- Up to 15% difference between pressures, also for consistent methods
 - VEM postprocessing before transport may introduce artifacts in flow field

Example 3: Multiphase flow



Conclusions

- TPFA inconsistent, grid effects, but monotone and matrices with low condition numbers
- Consistent methods: convergent, less grid effects, but monotonicity issues and denser, more ill-conditioned matrices
- MFD easy to implement, flexible wrt. grids, but not cell centered
- MPFA more difficult to implement and challenged by co-planar surface patches
- NTPFA promising, but not yet sufficiently robust



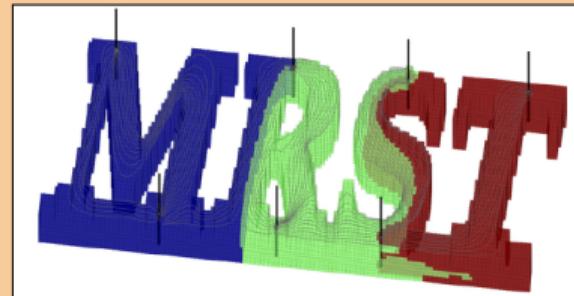
mrst.no

Paper source code and more examples:
[git@bitbucket.org:strene/
compare-elliptic.git](git@bitbucket.org:strene/compare-elliptic.git)

Conclusions

General advice

- Use *multiple* consistent methods to assess error from anisotropic permeability and grid orientation



mrst.no

Paper source code and more examples:
[git@bitbucket.org:strene/
compare-elliptic.git](git@bitbucket.org:strene/compare-elliptic.git)

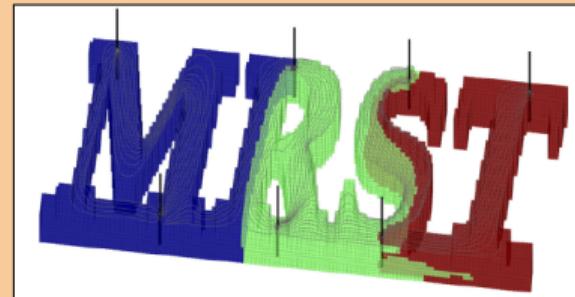
Conclusions

General advice

- Use *multiple* consistent methods to assess error from anisotropic permeability and grid orientation

Further work

- Multiphase: use flow diagnostics tools
 - sweep, drainage regions, well pairs, TOF, etc.
 - #/size of connected components in flux graph
- Effect on linear and nonlinear solver performance
- How does discretization affect transport solver?



mrst.no

Paper source code and more examples:
[git@bitbucket.org:strene/
compare-elliptic.git](git@bitbucket.org:strene/compare-elliptic.git)

Acknowledgements

Klemetsdal, Lie, and Raynaud were supported by the Research Council of Norway (244361). Møyner is funded by VISTA, a basic research programme funded by Equinor and conducted in close collaboration with The Norwegian Academy of Science and Letters.

References

I. Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids. *Comput. Geosci.*, 6(3-4):405–432, 2002. doi: 10.1023/A:1021291114475.

L. Agélas and R. Masson. Convergence of finite volume mpfa o type schemes for heterogeneous anisotropic diffusion problems on general meshes. *CR Acad. Paris Ser. I*, 346, 2008.

B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent projectors for virtual element methods. *Comput. Math. with Appl.*, 66(3): 376–391, 2013. doi: 10.1016/j.camwa.2013.05.015.

L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods. *Math. Model. Methods Appl. Sci.*, 23(01):199–214, 2013. doi: 10.1142/S0218202512500492.

L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker's guide to the virtual element method. *Math. Model. Methods Appl. Sci.*, 24(08):1541–1573, 2014. doi: 10.1142/S021820251440003X.

F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. *SIAM J. Numer. Anal.*, 43(5):1872–1896, 2005a.

F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. *Math. Model. Methods Appl. Sci.*, 15(10):1533–1551, 2005b. doi: 10.1142/S0218202505000832.

F. Brezzi, R. S. Falk, and L. Donatella Marini. Basic principles of mixed virtual element methods. *ESAIM Math. Model. Numer. Anal.*, 48(4): 1227–1240, 2014. doi: 10.1051/m2an/2013138.

L. B. da Veiga, L. Lipnikov, and G. Manzini. *Mimetic Finite Difference Method for Elliptic Problems*, volume 11. Springer, 2014.

J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: generic tools for the numerical analysis of diffusion equations. *ESAIM Math. Model. Numer. Anal.*, 50(3):749–781, 2016.

M. G. Edwards and C. F. Rogers. A flux continuous scheme for the full tensor pressure equation. In *ECMOR IV-4th European Conference on the Mathematics of Oil Recovery*, 1994.

E. Keilegavlen and I. Aavatsmark. Monotonicity for MPFA methods on triangular grids. *Comput. Geosci.*, 15(1):3–16, 2011. ISSN 14200597. doi: 10.1007/s10596-010-9191-5.

C. Le Potier. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. *International Journal on Finite Volumes*, pages 1–20, 2009.

K.-A. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and B. Skaflestad. Open-source MATLAB implementation of consistent discretisations on complex grids. *Comput. Geosci.*, 16(2):297–322, 2012. doi: 10.1007/s10596-011-9244-4.

K. Lipnikov, M. Shashkov, D. Svyatskiy, and Y. Vassilevski. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. *J. Comput. Phys.*, 227(1):492–512, 2007.

K. Lipnikov, D. Svyatskiy, and Y. Vassilevski. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. *J. Comput. Phys.*, 228(3):703–716, 2009.

T. Manzocchi, I. N. Carter, A. Skorstad, B. Fjellvoll, K. D. Stephen, J. A. Howell, J. D. Matthews, J. J. Walsh, M. Nepveu, C. Bos, J. Cole

Extra

