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Introduction

= Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...

= Simulation models often upscaled — polyhedral cells with full-tensor permeability

Industry-standard two-point flux approximation is generally not consistent
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Introduction

Subsurface reservoirs are complex: faults, fractures, complicated well paths, ...

Simulation models often upscaled — polyhedral cells with full-tensor permeability

Industry-standard two-point flux approximation is generally not consistent

Much research devoted to develop consistent methods

... yet very few are actually part of the reservoir engineering toolbox

In this work: Compare representative set of consistent methods within the same
framework (MRST) with emphasis on robustness and computational efficiency
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Consistent discretizations

= Incompressible, singe-phase, porous media flow

-V=aq, where \7 = —-KVp

m Finite volume method: divide into cells €2;, integrate + divergence theorem

V-ﬁds:/ g dx, or vij = q;

J€Eneigh(7)
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Consistent discretizations

Incompressible, singe-phase, porous media flow

-V=aq, where \7 = —-KVp

Finite volume method: divide into cells ;, integrate + divergence theorem

V-ﬁds:/ qdx, or Vi = q;
L 2 e

J€Eneigh(7)

{ Methods differ in how they approximate intercell fluxes v;;
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4/19



Consistent discretizations

Local conservation of mass
= Total mass flux across 0€2; must equal net charge of fluids inside Q; (vjj = —vj;)
Consistency

= Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

4/19



Consistent discretizations

Local conservation of mass
Total mass flux across 92; must equal net charge of fluids inside Q; (v = —vj;)
Consistency

Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)



Consistent discretizations

Local conservation of mass
Total mass flux across 92; must equal net charge of fluids inside Q; (v = —vj;)
Consistency

Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Robustness and flexibility

... to cope with the continued surge in complexity of geomodels



Consistent discretizations

Local conservation of mass
Total mass flux across 92; must equal net charge of fluids inside Q; (v = —vj;)
Consistency

Ensures correct solution, typically used with coercivity to prove convergence
(Agélas and Masson [2008], Brezzi et al. [2005a], Droniou et al. [2016], ...)

Monotonicity

Solution should obey discrete version of elliptic maximum principle
(Nordbotten et al. [2007], Keilegavlen and Aavatsmark [2011], ...)

Robustness and flexibility
... to cope with the continued surge in complexity of geomodels
Computational efficiency

Cost of assembling and solving the linear(ized) systems
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Consistent discretizations

TPFA: two-point expression vjj = T;i(pi — p;)
e Monotone, only consistent for K-orthogonal grids
NTPFA: nonlinear stencil v;j = T; j(p)pi — T;.i(p)p;

e Consistent and monotone, but nonlinear ...

(Nikitin et al. [2014], Lipnikov et al. [2007],
Le Potier [2009], Schneider et al. [2018], ...)
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e Monotone, only consistent for K-orthogonal grids
NTPFA: nonlinear stencil v;j = T; j(p)pi — T;.i(p)p;
e Consistent and monotone, but nonlinear ...

MPFA: wider stencil accounts for V p-components
parallel to faces — here: MPFA-O

e Consistent, but not always monotone

(Aavatsmark [2002], Edwards and Rogers
[1994], Keilegavlen and Aavatsmark [2011], ...)




Consistent discretizations

TPFA: two-point expression v;; = T;i(p; — p;)
e Monotone, only consistent for K-orthogonal grids
NTPFA: nonlinear stencil v;j = T; j(p)pi — T;.i(p)p;
e Consistent and monotone, but nonlinear ...

MPFA: wider stencil accounts for V p-components
parallel to faces — here: MPFA-O

e Consistent, but not always monotone
MFD: hybrid formulation, free stabilization parameter

e Consistency by more unknowns, not monotone

(Brezzi et al. [2005b], Lipnikov et al. [2009],
Lie et al. [2012], da Veiga et al. [2014], ...)
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Consistent discretizations

TPFA: two-point expression vjj = T;i(pi — p;)
e Monotone, only consistent for K-orthogonal grids
NTPFA: nonlinear stencil v;j = T; j(p)pi — T;.i(p)p;
e Consistent and monotone, but nonlinear ...

MPFA: wider stencil accounts for V p-components
parallel to faces — here: MPFA-O

e Consistent, but not always monotone

MFD: hybrid formulation, free stabilization parameter
e Consistency by more unknowns, not monotone
VEM: FEM-type discretization for polytopal grids

e Consistent, not monotone, here: non-conservative

0

Y 0 o T

(Beirdo da Veiga et al. [2013, 2014], Ahmad
et al. [2013], Brezzi et al. [2014], ...)
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Consistent discretizations

p A 7 10
dof Cell Face Node 14 >V
TPFA v X X
NTPFA v X X
MPFA 7 X x__|dof dof
MFD v 4 X
VEM /(2nd) | /(2nd) v R" R”
p Ay q
Ay Conservative | Consistent | Monotone | Linear | Higher-order
TPFA v X 4 v X
NTPFA v v 4 X X
MPFA v 4 X v/ X
MFD v 4 X 4 v
VEM X 4 X 4 v




Example 1: Monotonicity

zero pressure

point source

Kyx/Ky = 500

Cartesian grid PEBI grid Rotated Cartesian grid
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Example 1: Monotonicity
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Example 1: Monotonicity

0 1 2 3 4 5 6 7
TPEA | ‘- Fraction of c‘ells with negativ; pressure (%) ‘ | R TPFA
NTPFA I Magnitude of negative pressure - NTPFA
MPFA - MPFA
MFD - MFD
VEM1 - VEM1
VEM2 - VEM2

45

Higher-order VEM significantly better than the other linear methods,




Example 1: Monotonicity

Method dofs nnz | ratio cond
TPFA cells 2601 12801 4.92 | 1.45e+03
NTPFA cells 2601 17208 6.62 | 2.83e+03
MPFA cells + outer faces 3009 23209 7.71 | 1.69e+03
MFD faces 5100 35096 6.88 | 7.01e+03
VEM1 vertices 2704 22704 8.40 | 5.08e+04
VEM2 cells + faces + vertices 10609 | 162817 | 15.35 | 1.07e+06

Higher-order VEM significantly better than the other linear methods,
but also significantly more expensive
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180

Setup

-component

Permeability x

3, rotated by 7/6 in xy-plane

u Permeability anisotropy K, /K,

= Well injects 1 PV over 0.1 years, no-flow on top/bottom, fixed pressure on vertical sides
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Example 2: Near-well simulation

g1

TPFANTPFAMPFA MFD VEM1 VEM2 3 > TPFANTPFAMPFA MFD VEM1 VEM2

0
TPFANTPFAMPFA MFD VEM1 VEM2 TPFANTPFAMPFA MFD VEM1 VEM2
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Example 2: Near-well simulation

T

TPFANTPFAMPFA MFD VEM1 VEM2 3 > TPFANTPFAMPFA MFD VEM1 VEM2

TPFA flux differs significantly
from consistent methods

0
TPFANTPFAMPFA MFD VEM1 VEM2 TPFANTPFAMPFA MFD VEM1 VEM2
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Example 2: Near-well simulation

Method dof nnz | ratio cond
TPFA 2465 19809 8.04 | 1.11e+04
NTPFA 2465 33608 | 13.63 | 3.26e+05
MPFA 8507 98579 | 11.59 | 6.74e+04
MFD 9658 130438 | 13.51 | 2.94e+09
VEM1 5274 170618 | 32.35 | 2.22e+11
VEM2 30173 | 2495409 | 82.70 | 1.44e+12

Differences observed in 2D are even more severe in 3D
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Example 3: Multiphase flow

STz

Full model Subset of model

SAIGUP study: Geomodel of shallow-marine oil reservoir with several major faults and
mud-rapes, posed on cornerpoint grid (Manzocchi et al. [2008])
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Example 3: Multiphase flow
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Example 3: Multiphase flow
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Example 3: Multiphase
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VEM solutions differ significantly
due to postprocessing of fluxes
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Example 3: Multiphase flow

= TPFA:

Mean water cut vs. time
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larger saturation along injection boundary, and earlier breakthrough

15/19



Example 3: Multiphase flow

Mean pressure vs. time
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Production boundary

m TPFA: larger saturation along injection boundary, and earlier breakthrough

= Up to 15% difference between pressures, also for consistent methods

e VEM postprocessing before transport may introduce artifacts in flow field
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Example 3: Multiphase flow

Condition number vs. time
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Conclusions

TPFA inconsistent, grid effects, but monotone and
matrices with low condition numbers

Consistent methods: convergent, less grid effects,
but monotonicity issues and denser, more
ill-conditioned matrices

MFD easy to implement, flexible wrt. grids, but not

cell centered mrst.no
MPFA more difficult to implement and challenged Paper source code and more examples:
by co-planar surface patches gitObitbucket.org:strene/

compare-elliptic.git

NTPFA promising, but not yet sufficiently robust
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Conclusions

General advice

Use multiple consistent methods to assess error from
anisotropic permeability and grid orientation

mrst.no

Paper source code and more examples:

git@bitbucket.org:strene/
compare-elliptic.git
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Conclusions

General advice

Use multiple consistent methods to assess error from
anisotropic permeability and grid orientation

Further work

Multiphase: use flow diagnostics tools

e sweep, drainage regions, well pairs, TOF, etc. mrst.no

e #/size of connected components in flux graph
Paper source code and more examples:

Effect on linear and nonlinear solver performance git@bitbucket.org: strene/
. . . compare-elliptic.git
How does discretization affect transport solver?
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