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= Linear domain decomposition
e Well-established means to construct scalable algorithms
Wallis et al. [1985], Killough and Wheeler [1987], Stueben [2001], Lie et al. [2017]
= Nonlinear domain decomposition
e Popular in variable domain — sequential splitting
Watts [1986], Trangenstein and Bell [1989], Jenny et al. [2006], Mgyner and Lie [2016]
e Not so much in spatial domain
e However: problem equations are strongly coupled, highly nonlinear, unbalanced
— Spatial domain decomposition is an excellent nonlinear a preconditioner
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Introduction: Domain decomposition methods in reservoir simulation

Additive Schwarz Preconditioned Inexact Newton (ASPIN) (Cai and Keyes [2002])
= Spatial domain decomposition (Liu et al. [2013], Skogestad et al. [2013] (two-phase flow))

= Variable domain decomposition (Li et al. [2019] (MS wells), Wong [2018] (geothermal))

= Related: Dolean et al. [2016] (Forchheimer equation), Liu et al. [2013] (Multiplicative SPIN)
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Introduction: Domain decomposition methods in reservoir simulation

Additive Schwarz Preconditioned Inexact Newton (ASPIN) (Cai and Keyes [2002])
= Spatial domain decomposition (Liu et al. [2013], Skogestad et al. [2013] (two-phase flow))

= Variable domain decomposition (Li et al. [2019] (MS wells), Wong [2018] (geothermal))

= Related: Dolean et al. [2016] (Forchheimer equation), Liu et al. [2013] (Multiplicative SPIN)

In this work: apply nonlinear domain decomposition preconditioning (NLDDP)
(exact/inexact) to complex problems with realistic geology and fluid physics
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Nonlinear domain decomposition preconditioning

= Conservation of mass of a component i on discrete, implicit form

R = 2L (M — M?) + div(VI+) - Q1 = 0

——

= div: discrete divergence operator (two-point, multipoint, mimetic, etc.)

]

® |n this work: linear two-point flux approximation
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Nonlinear domain decomposition preconditioning

= Conservation of mass of a component i on discrete, implicit form

R = 2L (M — M?) + div(VI+) - Q1 = 0

——

= div: discrete divergence operator (two-point, multipoint, mimetic, etc.)

]

® |n this work: linear two-point flux approximation

= Gather in nonlinear system R(u) = 0, linearize, and neglect higher-order terms
— iterative Newton's method

R
u 1 = uk + Au, —g—uAu = R(u¥)
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Nonlinear domain decomposition preconditioning

Nonlinear preconditioning with two subdomains

= Partition unknowns u into two non-overlapping subdomains
R(u) = (R1(u1,u2),R2(u1,u2)) = 0,
= Define solution operator £(u) = (L£1(u), L2(u)), where

Ri(£1(u),u2) =0, and Ry(uy,Lo(u)) =0.
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) =0

Find u so that u = L(u), or F(u)=u— L(u) =0

= Fixed-point schemes tend to have poor convergence properties
e Acceleration: Aitken, Anderson, quasi-Newton (Jiang and Tchelepi [2019])
= Here: apply Newton's method directly to F(u):

0L,

0L

F F o

ukt = uk + Au, —a—Au = F(uk), where 8— —— |
Ju Ou 9%,

e Challenge: F implicitly defined through operator £ — how to compute OF /0u?
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) =0

Find u so that u = L(u), or F(u)=u— L(u) =0

= Use that R1(£1(u),u2) = 0 to find

OR:  ORLIL1  ORy dup

ou  Oup Ou Ouyr Ou =0

= Rearrange to obtain

o __ (2 g

OLs OR>\ " R, Ouy
- = T and = — _—
ou Ouy

Ous Ou ou 8_112 Ou; Ou

= Natural extension to m subdomains
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) =0

Find u so that u = L(u), or F(u)=u— L(u) =0

u Jacobian OF /Ou generally dense — expensive to build, challenging to precondition
= Breakdown of Jacobian blocks reveals that

-1
OF [g—"l 0] OR _ __;6R
ou =P %

0 R GuT T Bu
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) =0

Find u so that u = L(u), or F(u)=u— L(u) =0

u Jacobian OF /Ou generally dense — expensive to build, challenging to precondition
= Breakdown of Jacobian blocks reveals that

-1 Original problem Jacobian
OF _ |\?9_I:11 0 ] OR _ Dla—R/[ (almost) ]

%_Og—ﬁj u du

— Can interpret linearized system as

OF OR
—%Au =F(u) = —%Au = DF(u).

e We're back on home ground — we know what preconditioners to use!

8/20



t=t+At, W’ =uk k=0

IR(uA)|| < e?

k=k+1
{Build residual R(u¥) without Jacobians](—
Global stage

Local stage
For each subdomain i =1,...,m, find ufﬂ/z so that -’[Compute ASPEN residual F(u) = uk — ukt1/2 ]
k+1/2
Ri(u,fu cee »Uf'ilv u; / 7u;(+17 B u:’;-:) =0
Solve linear system — 9% Au = DF(u), where
AR oy — (uk k k+1/2 K k
[Evaluateﬁ inu=(uf,...,u,u; N PN T/8) ] oR; R, ORy 0
Ouy Qum Ouy
OR
a0 | i |, D=
u ORp R 0 Ry
HR(ukH/Z)H < no duy fum Oum
[Update solution ukt! = uk + Au ]—

uktl = yk+1/2
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Example 1: Buckley-Leverett displacement

Global stage
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Water saturation \ ——Current
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0
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Example 2: Fractured reservoir

=22

ermeability (md)

2.02 16.97 142.27 1192.78 10000

® 1000 x 500 m? reservoir with thirteen fractures on layered, low-perm background®
® Two-phase liquid-gas model with n-decane, carbon dioxide, and methane

® Simulate injection of n-decane and carbon dioxide mixture over 2555 days
!Slightly modified from Mgyner and Tchelepi [2018]
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Example 2: Fractured reservoir

CO» mole fraction
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m Subdomains with more than seven iterations in total outlined in red
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Example 2: Fractured reservoir

[l Newton
15 EASPEN

Total average

® Subdomains with more than seven iterations in total outlined in red
m Steady convergence for both solvers during the first 900 days of injection

m Global solver struggles significantly when injected fluids reach producer
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Example 4: Field-scale model (SAIGUP)

P5

Permeability (md)

—_I:D:\====.=.===:dj]]]]ﬂ:ﬂ:|:\:|]]33:_

I 00000 ]
0 0.07 2.64 104.02 41013

= Shallow-marine oil reservoir, modeled in the SAIGUP study (Manzocchi et al. [2008])
m Spans lateral area of ~ 9 x 3 km?, 40 x 120 x 20 corner-point grid, several major faults
m Simulate 30 years of water injection with slightly compressible two-phase oil-water model

= Subdomains constructed by combining METIS partition with tubes around each well
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Example 4: Field-scale model (SAIGUP)
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Example 4: Field-scale model (SAIGUP)

Average nonlinear iterations per timestep
3 T T

T
I Newton
I ASPEN

Pressure Transport
Fully implicit Sequential

® Moderate CFL, simple fluid physics — near-optimal global nonlinear solver performance
® ASPEN nevertheless uses less iterations than global solver
e Arguably equally important as excellent performance on challenging corner cases
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Example 5: Water-alternating gas injection (WAG)

i

Permeability (md) Saturatlon
Ntr,

0 0.11 3.75 132.09 4647.5

= First layer of SPE10 Model 2, three-phase, six-component fluid (C1, 3, 6, 10, 15, and 20)
m WAG injection: C1 gas for 5000 days + water for 5000 days 4+ C1 gas for 5000 days?

® Simulate four setups with target timesteps of 25, 50, 100 and 200 days

'Example from Moncorgé et al. [2018]
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Example 5: Water-alternating gas injection (WAG)
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Example 5: Water-alternating gas injection (WAG)

o

o J/—' ©
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Example 5: Water-alternating gas injection (WAG)

C-1 mole fraction Subdomain iterations}
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Example 5: Water-alternating gas injection (WAG)

I Newton
9l I ASPEN
6 L
0
At = 25 days =50 days At =100 days =200 days

m Significant increase in global solver iterations with At — only slight increase for ASPEN

® Robustness with respect to At due to local control of nonlinear solution process
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Concluding remarks

Conclusions
® Nonlinear domain decomposition preconditioner applicable to realistic problems

u Significant reduction in nonlinear iterations for wide range of examples

Robust with respect to timestep size

Reformulation enables using established iterative linear solvers
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Concluding remarks

Conclusions
® Nonlinear domain decomposition preconditioner applicable to realistic problems

= Significant reduction in nonlinear iterations for wide range of examples

Robust with respect to timestep size

= Reformulation enables using established iterative linear solvers

Future work
= Multiplicative NLDDP for transport — reordering (Natvig and Lie [2008])
= Further utilize localization

e Local timestepping techniques (Linga et al. [2020])
e Adaptive sequential fully-implicit methods (Mgyner and Moncorgé [2019])
e Dynamic coarsening (Klemetsdal and Lie [2020])
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Extra: Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) =0

Find u so that u = L(u), or F(u)=u— L(u) =0

Natural extension to m subdomains u = (uy,...,up), (Ri(u),...,Ry(u))

= Corresponding solution operators L£1,...,Lm,
R;(ul, RPN ¥ i £,-(u), Ujitly.--y um) =0
= As for the two-subdomain-case, we get

ocL; _  (OR\ Zm: 9R; Ou;
ou ou; 4~ 0Ouj Ou
J=1j#i
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Extra: Buckley-Leverett displacement (Example 1)

Global stage
0.8 0.8
~
0.6 0.6
N
04 N 0.4
\
0.2 0.2
Water saturation \
0 0
0 20 40 60 80 100 0 20 40 60 80 100
6 Horizontal distance (m)
4 || Subdomain iterations
2
0

Horizontal 1D channel, CFL = 1, quadratic relative permeabilities, equal viscosities
Transport subproblem

= Visual kinks at subdomain boundaries after local solve

= Almost converged after additional global solve
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Extra: Buckley-Leverett displace

t (Example 1)

Local stage Global stage
600 600
500 500
400 X S N 400
N\
300 X A 300
200 NS 200
100 100
0
0 20 40 60 80 100 0 20 40 60 80 100

| Subdomain iterations

oNn ~ O 4

Horizontal distance (m)

Horizontal 1D channel, CFL = 1, quadratic relative permeabilities, equal viscosities

Pressure subproblem

® Local solve far from target solution

= Global solve effectively resolves long-range interactions
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Extra: Buckley-Leverett displacement (Example 1)

Nonlinear iterations per timestep

7 T T T 7
[ Newton
6r IASPEN | CFL=5 16
5| ] 45
4+ 14
3r B 13
2r B 12
ol HE ’ K
0 0
Pressure Transport Pressure Transport
Fully implicit Sequential Fully implicit Sequential
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