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Introduction: Domain decomposition methods in reservoir simulation

Variable Space
Linear

3 3

Nonlinear

3∗ 7

� Linear domain decomposition

• Well-established means to construct scalable algorithms
Wallis et al. [1985], Killough and Wheeler [1987], Stueben [2001], Lie et al. [2017]

� Nonlinear domain decomposition

• Popular in variable domain → sequential splitting
Watts [1986], Trangenstein and Bell [1989], Jenny et al. [2006], Møyner and Lie [2016]

• Not so much in spatial domain
• However: problem equations are strongly coupled, highly nonlinear, unbalanced
→ Spatial domain decomposition is an excellent nonlinear a preconditioner
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Introduction: Domain decomposition methods in reservoir simulation

Additive Schwarz Preconditioned Inexact Newton (ASPIN) (Cai and Keyes [2002])

� Spatial domain decomposition (Liu et al. [2013], Skogestad et al. [2013] (two-phase flow))

� Variable domain decomposition (Li et al. [2019] (MS wells), Wong [2018] (geothermal))

� Related: Dolean et al. [2016] (Forchheimer equation), Liu et al. [2013] (Multiplicative SPIN)

In this work: apply nonlinear domain decomposition preconditioning (NLDDP)
(exact/inexact) to complex problems with realistic geology and fluid physics
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Nonlinear domain decomposition preconditioning

� Conservation of mass of a component i on discrete, implicit form

Rn+1
i = 1

∆tn (Mn+1
i −Mn

i ) + div(Vn+1
i )−Qn+1

i = 0

� div: discrete divergence operator (two-point, multipoint, mimetic, etc.)

• In this work: linear two-point flux approximation

� Gather in nonlinear system R(u) = 0, linearize, and neglect higher-order terms
→ iterative Newton’s method

uk+1 = uk + ∆u, −∂R

∂u
∆u = R(uk)

Mass Flux Sources/sinks
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Nonlinear domain decomposition preconditioning

Nonlinear preconditioning with two subdomains

� Partition unknowns u into two non-overlapping subdomains

R(u) = (R1(u1,u2),R2(u1,u2)) = 0,

� Define solution operator L(u) = (L1(u),L2(u)), where

R1

(
L1(u),u2

)
= 0, and R2

(
u1,L2(u)

)
= 0.

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = L(u), or F(u) ≡ u− L(u) = 0
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = L(u), or F(u) ≡ u− L(u) = 0

� Fixed-point schemes tend to have poor convergence properties

• Acceleration: Aitken, Anderson, quasi-Newton (Jiang and Tchelepi [2019])

� Here: apply Newton’s method directly to F(u):

uk+1 = uk + ∆u, −∂F

∂u
∆u = F(uk), where

∂F

∂u
= I−

[
∂L1
∂u

∂L2
∂u

]

• Challenge: F implicitly defined through operator L – how to compute ∂F/∂u?
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = L(u), or F(u) ≡ u− L(u) = 0

� Use that R1(L1(u),u2) = 0 to find

∂R1

∂u
=

∂R1

∂u1

∂L1

∂u
+

∂R1

∂u2

∂u2

∂u
= 0

� Rearrange to obtain

∂L1

∂u
= −

(
∂R1

∂u1

)−1 ∂R1

∂u2

∂u2

∂u
and

∂L2

∂u
= −

(
∂R2

∂u2

)−1 ∂R2

∂u1

∂u1

∂u

� Natural extension to m subdomains
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Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = L(u), or F(u) ≡ u− L(u) = 0

� Jacobian ∂F/∂u generally dense → expensive to build, challenging to precondition

� Breakdown of Jacobian blocks reveals that

∂F

∂u
=

[
∂R1

∂u1
0

0 ∂R2

∂u2

]−1
∂R

∂u
≡ D−1 ∂R

∂u

→ Can interpret linearized system as

−∂F

∂u
∆u = F(u) ⇐⇒ −∂R

∂u
∆u = DF(u).

• We’re back on home ground – we know what preconditioners to use!
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−∂F

∂u
∆u = F(u) ⇐⇒ −∂R

∂u
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• We’re back on home ground – we know what preconditioners to use!

Original problem Jacobian
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‖R(uk)‖ < ε?

For each subdomain i = 1, . . . ,m, find u
k+1/2
i so that

Ri (u
k
1 , . . . ,u

k
i−1,u

k+1/2
i ,uki+1, . . . ,u

k
m) = 0

Evaluate ∂Ri
∂u in u = (uk1 , . . . ,u

k
i−1,u

k+1/2
i ,uki+1, . . . ,u

k
m)

Local stage

‖R(uk+1/2)‖ < ε?

Compute ASPEN residual F(u) = uk − uk+1/2

Solve linear system −∂R
∂u ∆u = DF(u), where

∂R

∂u
=




∂R1
∂u1

· · · ∂R1
∂um

...
. . .

...
∂Rm
∂u1

· · · ∂Rm
∂um


 , D =




∂R1
∂u1

0
. . .

0 ∂Rm
∂um




Update solution uk+1 = uk + ∆u

Global stage

Build residual R(uk) without Jacobians

t < T?

Initial state u0, t = 0, k = 0

Done

no

no

yes uk+1 = uk+1/2

k = k + 1

yes

t = t + ∆t, u0 = uk , k = 0

yes

no
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Example 1: Buckley-Leverett displacement
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Example 2: Fractured reservoir

Permeability (md) Partition

� 1000× 500 m2 reservoir with thirteen fractures on layered, low-perm background1

� Two-phase liquid-gas model with n-decane, carbon dioxide, and methane

� Simulate injection of n-decane and carbon dioxide mixture over 2555 days
1Slightly modified from Møyner and Tchelepi [2018]
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Example 2: Fractured reservoir
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� Steady convergence for both solvers during the first 900 days of injection

� Global solver struggles significantly when injected fluids reach producer
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Example 4: Field-scale model (SAIGUP)

Permeability (md) Partition

� Shallow-marine oil reservoir, modeled in the SAIGUP study (Manzocchi et al. [2008])

� Spans lateral area of ∼ 9× 3 km2, 40× 120× 20 corner-point grid, several major faults

� Simulate 30 years of water injection with slightly compressible two-phase oil-water model

� Subdomains constructed by combining METIS partition with tubes around each well

13 / 20



Example 4: Field-scale model (SAIGUP)

Water saturation Subdomain iterations
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Example 4: Field-scale model (SAIGUP)

Pressure Transport
0

1

2

3

Fully implicit Sequential

Newton

ASPEN

Average nonlinear iterations per timestep

� Moderate CFL, simple fluid physics → near-optimal global nonlinear solver performance

� ASPEN nevertheless uses less iterations than global solver

• Arguably equally important as excellent performance on challenging corner cases
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Example 5: Water-alternating gas injection (WAG)

Sg = 1

Sw = 1 So = 1

Permeability (md) Saturation

� First layer of SPE10 Model 2, three-phase, six-component fluid (C1, 3, 6, 10, 15, and 20)

� WAG injection: C1 gas for 5000 days + water for 5000 days + C1 gas for 5000 days1

� Simulate four setups with target timesteps of 25, 50, 100 and 200 days

1Example from Moncorgé et al. [2018]
16 / 20



Example 5: Water-alternating gas injection (WAG)

C-1 mole fraction Subdomain iterations
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Example 5: Water-alternating gas injection (WAG)

0
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Newton

ASPEN

∆t = 25 days ∆t = 50 days ∆t = 100 days ∆t = 200 days

� Significant increase in global solver iterations with ∆t – only slight increase for ASPEN

� Robustness with respect to ∆t due to local control of nonlinear solution process
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Concluding remarks

Conclusions

� Nonlinear domain decomposition preconditioner applicable to realistic problems

� Significant reduction in nonlinear iterations for wide range of examples

� Robust with respect to timestep size

� Reformulation enables using established iterative linear solvers

Future work

� Multiplicative NLDDP for transport – reordering (Natvig and Lie [2008])

� Further utilize localization

• Local timestepping techniques (Linga et al. [2020])
• Adaptive sequential fully-implicit methods (Møyner and Moncorgé [2019])
• Dynamic coarsening (Klemetsdal and Lie [2020])
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• Dynamic coarsening (Klemetsdal and Lie [2020])

19 / 20



References
X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput., 24(1):183–200, 2002. URL

https://doi.org/10.1137/S106482750037620X.
V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition

Newton’s method. SIAM J. Sci. Comput., 38(6):A3357–A3380, 2016. URL https://doi.org/10.1137/15M102887X.
P. Jenny, S. H. Lee, and H. A. Tchelepi. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous

porous media. J. Comput. Phys., 217(2):627–641, 2006. ISSN 0021-9991. doi: 10.1016/j.jcp.2006.01.028. URL
http://dx.doi.org/10.1016/j.jcp.2006.01.028.

J. Jiang and H. A. Tchelepi. Nonlinear acceleration of sequential fully implicit (SFI) method for coupled flow and transport in porous media.
Comput. Methods Appl. Mech. Eng., 352:246–275, 2019. ISSN 00457825. doi: 10.1016/j.cma.2019.04.030. URL
https://doi.org/10.1016/j.cma.2019.04.030.

J. E. Killough and M. F. Wheeler. Parallel iterative linear equation solvers: An investigation of domain decomposition algorithms for reservoir
simulation. In SPE Symposium on Reservoir Simulation, page 20, 1987. doi: 10.2118/16021-MS.

Ø. S. Klemetsdal and K.-A. Lie. Dynamic coarsening and local reordered nonlinear solvers for simulating transport in porous media. SPE J.,
(January):1–20, 2020. doi: 10.2118/201089-PA.

J. Li, Z. Y. Wong, P. Tomin, and H. Tchelepi. Sequential implicit Newton method for coupled multi-segment wells. In SPE Reservoir Simululation
Conference, 2019. doi: 10.2118/193833-MS.

K.-A. Lie, O. Møyner, J. R. Natvig, A. Kozlova, K. Bratvedt, S. Watanabe, and Z. Li. Successful application of multiscale methods in a real reservoir
simulator environment. Comput. Geosci., 21(5-6):981–998, 2017. ISSN 15731499. doi: 10.1007/s10596-017-9627-2.
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Extra: Nonlinear domain decomposition preconditioning

Equivalent, fixed-point formulation of R(u) = 0

Find u so that u = L(u), or F(u) ≡ u− L(u) = 0

Natural extension to m subdomains u = (u1, . . . ,um),
(
R1(u), . . . ,Rm(u)

)

� Corresponding solution operators L1, . . . ,Lm

Ri

(
u1, . . . ,ui−1,Li (u),ui+1, . . . ,um

)
= 0

� As for the two-subdomain-case, we get

∂Li
∂u

= −
(
∂Ri

∂ui

)−1



m∑

j=1,j 6=i

∂Ri

∂uj

∂uj

∂u


 .

1 / 3



Extra: Buckley-Leverett displacement (Example 1)
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Horizontal 1D channel, CFL = 1, quadratic relative permeabilities, equal viscosities

Transport subproblem

� Visual kinks at subdomain boundaries after local solve

� Almost converged after additional global solve
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Extra: Buckley-Leverett displacement (Example 1)

0 20 40 60 80 100

0

100

200

300

400

500

600

700

0

2

4

6

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Target

Previous

Current

Local stage Global stage

Pressure (Pa)

Subdomain iterations
Horizontal distance (m)
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� Local solve far from target solution

� Global solve effectively resolves long-range interactions
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Extra: Buckley-Leverett displacement (Example 1)

Nonlinear iterations per timestep
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