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Introduction

� Linear systems in reservoir simulation are typically ill-conditioned and challenging to solve
→ need for iterative solvers with efficient preconditioners1

� Constrained pressure-residual method (CPR)2: physics-based preconditioner
• inexpensive pressure estimate used in initial guess for solution to full system

� Multiscale methods have been applied as CPR pressure solver3

� Herein: improve convergence of linear solver by applying multiple multiscale operators that
• target specific features in the geological model;
• resolve dynamic couplings between pressure and other variables

1Lacroix et al., 2003, 2Wallis, 1983; Wallis et al., 1985; Gries et al., 2014, 3Cusini et al (2015)
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Governing equations

� Conservation of mass for component β:

∂

∂t
(
φ
[
ρwSwXwβ + ρoSoXoβ + ρvSvXvβ

] )
+ ∇ ·

(
ρwXwβ®vw + ρoXoβ®vo + ρvXvβ®vv

)
= qβ

®vα = −
krα
µα

K (∇pα − ραg∇z)

� Fugacity balance:

f oβ (p,T, Xo1, . . . , XoNc ) = f vβ (p,T, Xv1, . . . , XvNc )

� Closure relations:

Sw + So + Sv = 1,
Nc∑
β=1

Xαβ = 1, α = w, o, v

po = pw + Pcow(Sw, So), pv = po + Pcvo(So, Sv)

Mass balance
Darcy’s law

Phases fill PV

Mass fractions
sum to 1

Capillary
pressure
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Discretization

� Introduce grid {Ωi}
N
i=1, backward Euler for temporal discretization, integrate over each cell

→ Discrete conservation of mass for component β in cell i:

Fi
β = Ai

β +
∑

j∈N(i)

Gi, j
β −Qi

β = 0

� Write residuals and variables on vector form F(x) = 0, where

F = (F1, . . . ,FNc ) = (

︷                                  ︸︸                                  ︷
F1

1 , . . . , F
N
1 , . . . , F

1
Nc
, . . . , FN

Nc
) = (Fp,Fs)

x = (x1, x2, . . . , xNc ) = (p1, . . . , pN︸       ︷︷       ︸, x1
2, . . . , xN

2 , . . . , x1
Nc
, . . . , xN

Nc︸                                ︷︷                                ︸) = (xp, xs)

Accumulation Flux Sources/sinks
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Nc × N residuals

N pressure variables (Nc − 1) × N
secondary variables
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Preconditioning: constrained pressure-residual (CPR)

� Linearize and neglect higher-order terms→ Newton-Raphson method:

−

[
Jpp Jps

Jsp Jss

]
︸        ︷︷        ︸

[
∆xp

∆xs

]
︸ ︷︷ ︸ =

[
Fp

Fs

]
︸︷︷︸

� Typically solved iteratively, convergence rate reduced by
• Mixed elliptic/hyperbolic character→ pressure is a strong variable
• Large aspect ratios and variations in rock properties→ ill-conditioned systems
Effective preconditioner crucial

� Constrained pressure residual method (CPR)
1. Decouple system so that (J∗pp)−1J∗ps is "small"
• Obtain inexpensive estimate to pressure update ∆xp

2. Solve full system using (∆xp, 0) as initial guess

Jacobian matrix
(Jα,β)i, j = ∂Fi

α/∂xj
β

Newton update Residual
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� Typically solved iteratively, convergence rate reduced by
• Mixed elliptic/hyperbolic character→ pressure is a strong variable
• Large aspect ratios and variations in rock properties→ ill-conditioned systems
Effective preconditioner crucial

� Constrained pressure residual method (CPR)
1. Decouple system so that (J∗pp)−1J∗ps is "small"
• Obtain inexpensive estimate to pressure update ∆xp

2. Solve full system using (∆xp, 0) as initial guess

Almost elliptic (parabolic)
pressure equation
−J∗pp∆xp = F∗p

Jacobian matrix
(Jα,β)i, j = ∂Fi

α/∂xj
β

Newton update Residual
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Multiscale methods
(Hou and Wu, 1997;

Efendiev and Hou, 2009)
R A P pc = R q

Ac = RAP
p = Ppc qc = Rq

Basis function Restriction and prolongation operators

R

P

P

Multiscale solution

pc = A−1
c qc p = Ppc

Coarse gridFine grid
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Iterative multiscale multibasis method

� Multiscale methods typically resolve global low-frequency errors quite effectively
� Contain local high-frequency errors due to localization introduced to define basis functions
� Iterative framework1:

xk+1/2 = xk + S(A, q − Axk),
xk+1 = xk+1/2 + PA−1

c R(q − Axk+1/2)

1Hajibeygi et al., 2008; Wang et al., 2014

Smoothing operation (ILU(k))

Multiscale operation
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Iterative multiscale multibasis method

� Multiscale methods typically resolve global low-frequency errors quite effectively
� Contain local high-frequency errors due to localization introduced to define basis functions
� Iterative framework1 with multiple multiscale operators:

xk+(2`−1)/2Np = xk+(`−1)/Np + S`(A, q − Axk+(`−1)/Np ),

xk+`/Np = xk+(2`−1)/2Np + P`(A`c)−1R`(q − Axk+(2`−1)/2Np ).

� Each multiscale operator can target specific feature in geomodel
→ Feature-enhanced iterative multiscale multibasis method2

1Hajibeygi et al.; 2008, Wang et al., 2014, 2Lie et al., 2016

Smoothing operation (ILU(k))

Multiscale operation
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Iterative multiscale multibasis method

General partition (always included)
• Similar block sizes (e.g. rectilinear partition)
• MsRSB basis functions (Møyner and Lie, 2015)
• Resolves global pressure field
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Iterative multiscale multibasis method

General partition (always included)
• Similar block sizes (e.g. rectilinear partition)
• MsRSB basis functions (Møyner and Lie, 2015)
• Resolves global pressure field

Static geomodel features
• Permeability/fractures/wells etc.
• Resolves local errors introduced by geological features
• MsRSB or specialized basis functions

Dynamic couplings
• Partitions based on e.g, ∆p→ dynamic
• Local pressure changes along saturation fronts etc.
• Constant basis functions
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Solution procedure

Compute residual
F = F(x`)

Linearize equations
J∆x = F

Decouple system of equations
J∗ = WJ, F∗ = WF

Approximate pressure using MS
J∗pp∆xp = F∗p

Predictor

Update residual
F∗ = F∗−J∗(∆xp,0)T

Correct solution
∆x = ∆x+S(J∗,F∗)

Corrector

‖F∗−J∗∆x‖/‖F∗‖< TOLyes

x`
+

1
=

x`
+

∆x

no

Richarson/GMRES

Jpp Jps

JssJsp

J∗pp J∗ps

JssJsp

W

Decoupling

S S

One or a few cycles

S

General Static geomodel Dynamic couplings

Iterative multiscale multibasis solver
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Example 1: Coupling strength

Permebaility General rectilinear partition

� Incompressible two-phase model with single-component aqueous and liquid phase
� Geological model: 42 × 22 subset of Layer 10 of SPE 10 Model 21
� Initially filled with liquid phase, inject 1 PV of aqueous phase
� General basis: Rectilinear 6 × 2 with MsRSB basis functions
� Look at effect of dynamic basis functions as we vary viscosity and density ratios

1Christie and Blunt, 2001
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Example 1: Coupling strength

� Varying viscosity ratio µw/µo
� No capillary or gravity effects included

� Varying density ratio ρw/ρo
� No capillary effects, equal viscosities
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Example 1: Coupling strength
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� Average number of linear iterations per nonlinear iteration
� Adding dynamic basis is beneficial in all cases except unit density and viscosity ratios
� Difference of 0.8% and 0.5% comes from the extra smoothing iteration
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Example 2: Polymer injection

� Two-phase, three-component: Polymer injection in Layer 52 of SPE 10 Model 2
� Layer consist of high-permeable fluvial channels
� Injection over 2000 days, polymer slug injected from 400 to 800 days
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Example 2: Polymer injection

� General partition: MsRSB, partition generated using METIS1
� Static partitions based on permeability and velocity using agglomeration of grid cells2

� Well partition with specialized basis functions3

� Dynamic partition based on ∆p from previous timestep
1Karypis and Kumar, 1998 2Hauge et al., 2012 3Lie et al., 2017
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Example 2: Polymer injection
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� Average number of linear iterations per nonlinear iteration
� Beneficial with partitions honoring channeled structure
� Significant reduction by adding well partition (only 6 coarse cells)
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Example 3: Field model (SAIGUP)

� Shallow-marine oil reservoir, modeled in the SAIGUP study1
� Spans lateral area of ∼ 9 × 3 km2, 40 × 120 × 20 corner-point grid, several major faults
� Simulate WAG injection using four-phase four-pseudo-component model
• 0.8 PV of water + 0.8 PV of solvent gas/water cycles + 0.8 PV of water

1Manzocchi et al., 2008
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Example 3: Field model (SAIGUP)
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Example 3: Field model (SAIGUP)
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� Significant reduction during initial water injection
� With solvent: Strong coupling between solvent gas saturation and reservoir fluid mobility
→ two-stage CPR preconditioner not as effective.
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Computational efficiency

� Cost of using Np multiscale operators over using just one:

c(Np) = N
[
Np(4d + 2b + 4) + Nc(d + 1) + Nc(2dNc + 1)

]
� Relatively small cost compared to solving the full system (max 10 − 15% for realistic scenarios)
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Conclusion

� Feature-adapted multiscale method used as pressure solver in CPR preceonditioner for a
fully-implicit simulator

� Combination of general uniform, static geomodel, and dynamic partitions adapting to pressure
update/saturation
• Honors geological features, near-well regions, dynamic couplings

� Significant reduction in number of linear iterations observed
• 10 − 60% reduction compared to using CPR preconditioner with a single multiscale operator

� Experiments indicate that it is beneficial with
• static partitions honoring large permeability contrasts and/or near-well regions;
• partitions adapting to pressure updates whenever these are located along propagating fluid
fronts and/or discontinuous across fluid phase interfaces
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Extra – Discretization

Ai
β =

∑
α

Ai
α,β, Ai

α,β =
(
φραSαXαβ

)n+1
i −

(
φραSαXαβ

)n
i (Accumulation)

Gi, j
β =

∑
α

Gi, j
α,β Gi, j

α,β =
∆t
|Ωi |
|Γi j |

(
ραXαβ®vα · ®n

)n+1
i j (Flux)

Qi
β =

∆t
|Ωi |
(qβ)n+1

i (Sources/sinks)
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Extra – Decoupling
� Decoupling: find weights wβ for k = 2 . . . , Nc so that

IMPES:
Nc∑
β=1

Wβ

∂Aβ

∂xk
= 0, quasi-IMPES:

Nc∑
β=1

Wβ diag
(
∂Fβ
∂xk

)
= 0

1. Solve for w1 . . .wβ
MT

2,1 . . . MT
2,Nc

...
. . .

...
MT

Nc,1 . . . MT
Nc,Nc

I . . . I



w1
...
...

wβ


=


0
...
0
1


, Mk,β =


∂Aβ

∂xk IMPES

diag
(
∂Fβ

∂xk

)
quasi-IMPES

2. Premultiply J and F by

W =


W1 . . . WNc

0 I . . . 0
...

. . .
...

0 . . . I


, where Wβ = diag(wβ)
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Extra – Computational efficiency

� Cost of using Np multiscale operators (assuming all partitions are equal)

NpO
(
(Nd + N + 2Nd + N)︸                      ︷︷                      ︸+ (Nd + N + bN)︸             ︷︷             ︸+ Mp︸︷︷︸+ (bN + N)︸     ︷︷     ︸)

• d: Upper bound on number of nonzero elements in rows of A, d � N
• M: Number of coarse cells in partition
• b: Maximum number of basis functions with support in a single cell for a Galerkin
restriction, 1 < b < M

� Cost of using Np multiscale operators over using just one:

c(Np) ≈ N
[
Np(4d + 2b + 4) + Nc(d + 1) + Nc(2dNc + 1)

]
.

Smooth Restrict Solve for pc Prolongate and update
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