

Use Of Dynamically Adapted Basis Functions To Accelerate Multiscale Simulation Of Complex Geomodels

Øystein S. Klemetsdal^{1,2} Olav Møyner^{1,2} Knut-Andreas Lie^{1,2}

¹Department of Mathematical Sciences, NTNU, Norway

²Department of Mathematics and Cybernetics, SINTEF Digital

ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery
September 3–6, 2018, Barcelona, Spain

Introduction

- Linear systems in reservoir simulation are typically ill-conditioned and challenging to solve
→ need for iterative solvers with efficient preconditioners¹
- Constrained pressure-residual method (CPR)²: physics-based preconditioner
 - inexpensive pressure estimate used in initial guess for solution to full system
- Multiscale methods have been applied as CPR pressure solver³
- Herein: improve convergence of linear solver by applying multiple multiscale operators that
 - target specific features in the geological model;
 - resolve dynamic couplings between pressure and other variables

¹Lacroix et al., 2003, ²Wallis, 1983; Wallis et al., 1985; Gries et al., 2014, ³Cusini et al (2015)

Governing equations

- Conservation of mass for component β :

$$\frac{\partial}{\partial t} (\phi [\rho_w S_w X_{w\beta} + \rho_o S_o X_{o\beta} + \rho_v S_v X_{v\beta}]) + \nabla \cdot (\rho_w X_{w\beta} \vec{v}_w + \rho_o X_{o\beta} \vec{v}_o + \rho_v X_{v\beta} \vec{v}_v) = q_\beta$$
$$\vec{v}_\alpha = -\frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} (\nabla p_\alpha - \rho_\alpha g \nabla z)$$

Darcy's law

Mass balance

- Fugacity balance:

$$f_\beta^o(p, T, X_{o1}, \dots, X_{oN_c}) = f_\beta^v(p, T, X_{v1}, \dots, X_{vN_c})$$

- Closure relations:

$$S_w + S_o + S_v = 1, \quad \sum_{\beta=1}^{N_c} X_{\alpha\beta} = 1, \quad \alpha = w, o, v$$

Mass fractions sum to 1

Phases fill PV

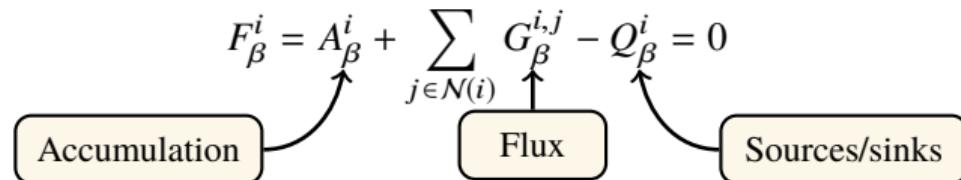
$$p_o = p_w + P_{cow}(S_w, S_o), \quad p_v = p_o + P_{cvo}(S_o, S_v)$$

Capillary pressure

Discretization

- Introduce grid $\{\Omega_i\}_{i=1}^N$, backward Euler for temporal discretization, integrate over each cell
→ Discrete conservation of mass for component β in cell i :

$$F_\beta^i = A_\beta^i + \sum_{j \in N(i)} G_\beta^{i,j} - Q_\beta^i = 0$$



- Write residuals and variables on vector form $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, where

$$\mathbf{F} = (\mathbf{F}_1, \dots, \mathbf{F}_{N_c}) = (F_1^1, \dots, F_1^N, \dots, F_{N_c}^1, \dots, F_{N_c}^N) = (\mathbf{F}_p, \mathbf{F}_s)$$

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N_c}) = (p_1, \dots, p_N, x_2^1, \dots, x_2^N, \dots, x_{N_c}^1, \dots, x_{N_c}^N) = (\mathbf{x}_p, \mathbf{x}_s)$$

Discretization

- Introduce grid $\{\Omega_i\}_{i=1}^N$, backward Euler for temporal discretization, integrate over each cell
→ Discrete conservation of mass for component β in cell i :

$$F_\beta^i = A_\beta^i + \sum_{j \in N(i)} G_\beta^{i,j} - Q_\beta^i = 0$$

- Write residuals and variables on vector form $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, where

$$\mathbf{F} = (\mathbf{F}_1, \dots, \mathbf{F}_{N_c}) = (\underbrace{F_1^1, \dots, F_1^N, \dots, F_{N_c}^1, \dots, F_{N_c}^N}_{N_c \times N \text{ residuals}}) = (\mathbf{F}_p, \mathbf{F}_s)$$
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N_c}) = (\underbrace{p_1, \dots, p_N}_{N \text{ pressure variables}}, \underbrace{x_2^1, \dots, x_2^N, \dots, x_{N_c}^1, \dots, x_{N_c}^N}_{(N_c - 1) \times N \text{ secondary variables}}) = (\mathbf{x}_p, \mathbf{x}_s)$$

Preconditioning: constrained pressure-residual (CPR)

- Linearize and neglect higher-order terms → Newton-Raphson method:

$$-\begin{bmatrix} \mathbf{J}_{pp} & \mathbf{J}_{ps} \\ \mathbf{J}_{sp} & \mathbf{J}_{ss} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_p \\ \Delta \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{F}_p \\ \mathbf{F}_s \end{bmatrix}$$

Jacobian matrix
 $(\mathbf{J}_{\alpha, \beta})_{i,j} = \partial \mathbf{F}_{\alpha}^i / \partial \mathbf{x}_{\beta}^j$

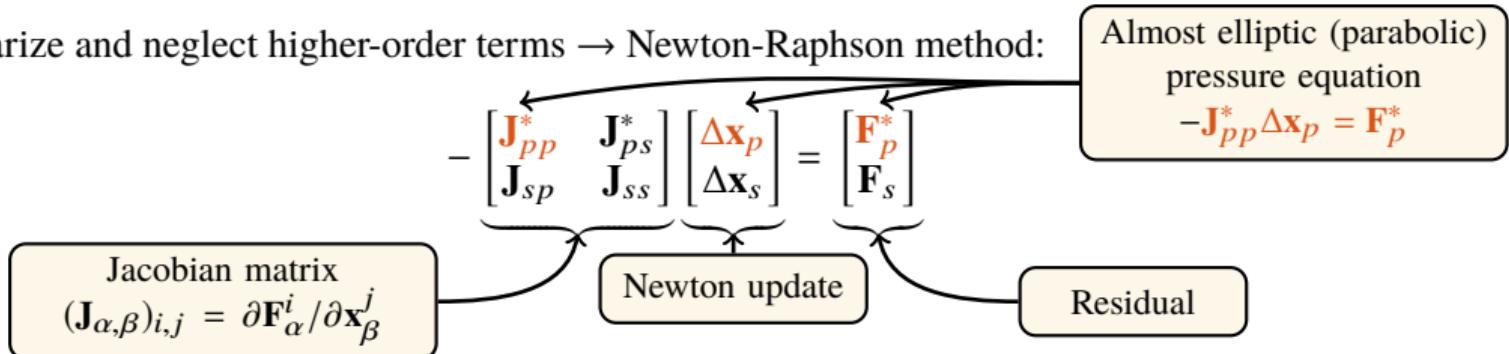
Newton update

Residual

- Typically solved iteratively, convergence rate reduced by
 - Mixed elliptic/hyperbolic character → pressure is a strong variable
 - Large aspect ratios and variations in rock properties → ill-conditioned systems
- Effective preconditioner crucial
- Constrained pressure residual method (CPR)
 1. Decouple system so that $(\mathbf{J}_{pp}^*)^{-1} \mathbf{J}_{ps}^*$ is "small"
 - Obtain inexpensive estimate to pressure update $\Delta \mathbf{x}_p$
 2. Solve full system using $(\Delta \mathbf{x}_p, \mathbf{0})$ as initial guess

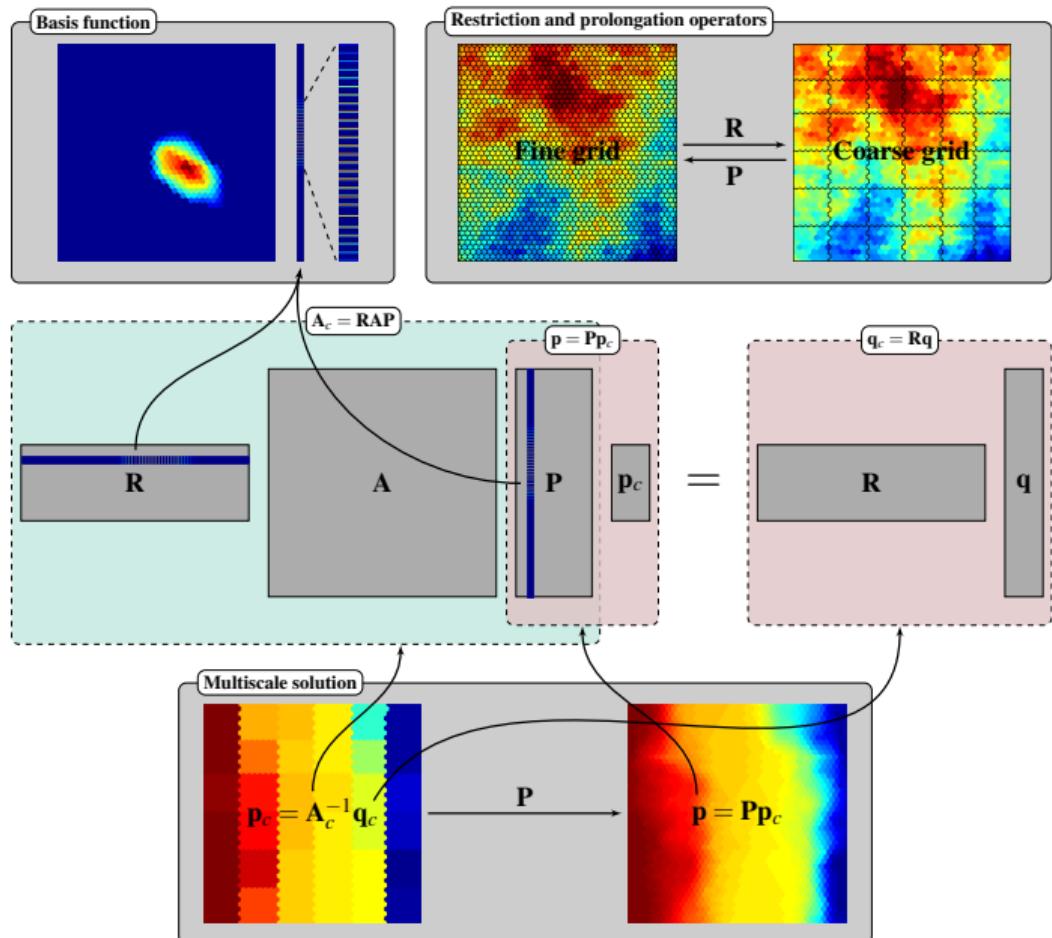
Preconditioning: constrained pressure-residual (CPR)

- Linearize and neglect higher-order terms → Newton-Raphson method:



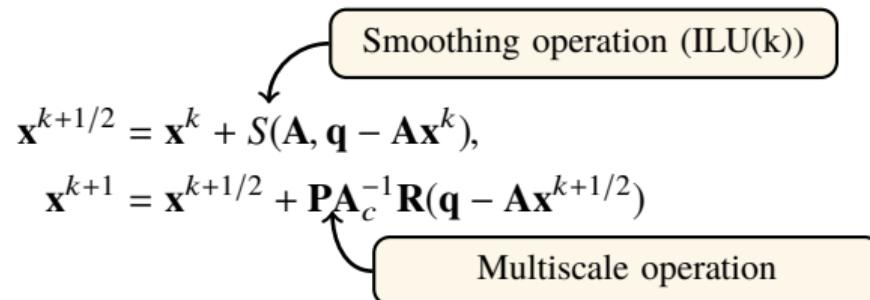
- Typically solved iteratively, convergence rate reduced by
 - Mixed elliptic/hyperbolic character → pressure is a strong variable
 - Large aspect ratios and variations in rock properties → ill-conditioned systems
- Effective preconditioner crucial
- Constrained pressure residual method (CPR)
 - Decouple system so that $(\mathbf{J}_{pp}^*)^{-1} \mathbf{J}_{ps}^*$ is "small"
 - Obtain inexpensive estimate to pressure update $\Delta \mathbf{x}_p$
 - Solve full system using $(\Delta \mathbf{x}_p, \mathbf{0})$ as initial guess

Multiscale methods (Hou and Wu, 1997; Efendiev and Hou, 2009)



Iterative multiscale multibasis method

- Multiscale methods typically resolve global low-frequency errors quite effectively
- Contain local high-frequency errors due to localization introduced to define basis functions
- Iterative framework¹:



¹Hajibeygi et al., 2008; Wang et al., 2014

Iterative multiscale multibasis method

- Multiscale methods typically resolve global low-frequency errors quite effectively
- Contain local high-frequency errors due to localization introduced to define basis functions
- Iterative framework¹ with multiple multiscale operators:

$$\mathbf{x}^{k+(2\ell-1)/2N_p} = \mathbf{x}^{k+(\ell-1)/N_p} + S^\ell(\mathbf{A}, \mathbf{q} - \mathbf{A}\mathbf{x}^{k+(\ell-1)/N_p}),$$
$$\mathbf{x}^{k+\ell/N_p} = \mathbf{x}^{k+(2\ell-1)/2N_p} + \mathbf{P}^\ell(\mathbf{A}_c^\ell)^{-1} \mathbf{R}^\ell(\mathbf{q} - \mathbf{A}\mathbf{x}^{k+(2\ell-1)/2N_p}).$$

Smoothing operation (ILU(k))

Multiscale operation

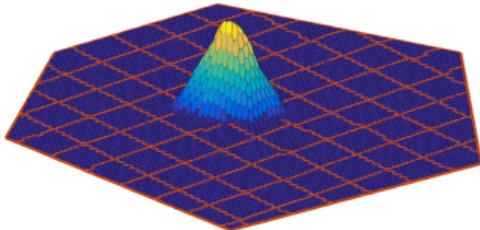
The diagram illustrates the iterative framework. It shows two equations. The first equation is $\mathbf{x}^{k+(2\ell-1)/2N_p} = \mathbf{x}^{k+(\ell-1)/N_p} + S^\ell(\mathbf{A}, \mathbf{q} - \mathbf{A}\mathbf{x}^{k+(\ell-1)/N_p}),$ with a curved arrow pointing from the term $\mathbf{x}^{k+(\ell-1)/N_p}$ to a box labeled "Smoothing operation (ILU(k))". The second equation is $\mathbf{x}^{k+\ell/N_p} = \mathbf{x}^{k+(2\ell-1)/2N_p} + \mathbf{P}^\ell(\mathbf{A}_c^\ell)^{-1} \mathbf{R}^\ell(\mathbf{q} - \mathbf{A}\mathbf{x}^{k+(2\ell-1)/2N_p}).$ with a curved arrow pointing from the term $\mathbf{x}^{k+(2\ell-1)/2N_p}$ to a box labeled "Multiscale operation".

- Each multiscale operator can target specific *feature* in geomodel
→ Feature-enhanced iterative multiscale multibasis method²

¹Hajibeygi et al.; 2008, Wang et al., 2014,

²Lie et al., 2016

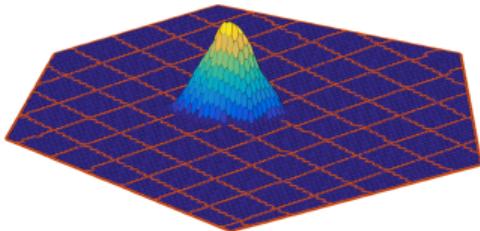
Iterative multiscale multibasis method



General partition (always included)

- Similar block sizes (e.g. rectilinear partition)
- MsRSB basis functions (Møyner and Lie, 2015)
- Resolves global pressure field

Iterative multiscale multibasis method

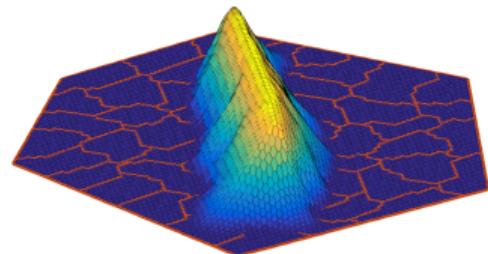


General partition (always included)

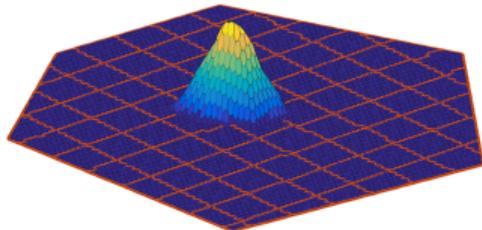
- Similar block sizes (e.g. rectilinear partition)
- MsRSB basis functions (Møyner and Lie, 2015)
- Resolves global pressure field

Static geomodel features

- Permeability/fractures/wells etc.
- Resolves local errors introduced by geological features
- MsRSB or specialized basis functions



Iterative multiscale multibasis method

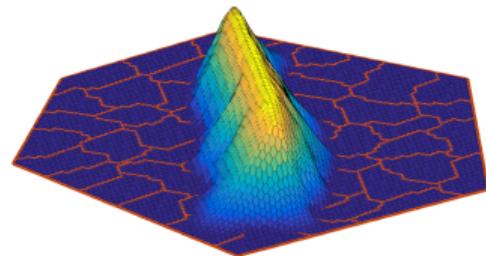
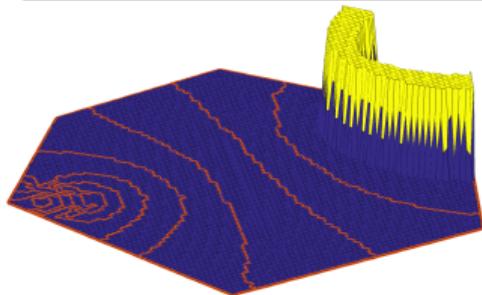


General partition (always included)

- Similar block sizes (e.g. rectilinear partition)
- MsRSB basis functions (Møyner and Lie, 2015)
- Resolves global pressure field

Static geomodel features

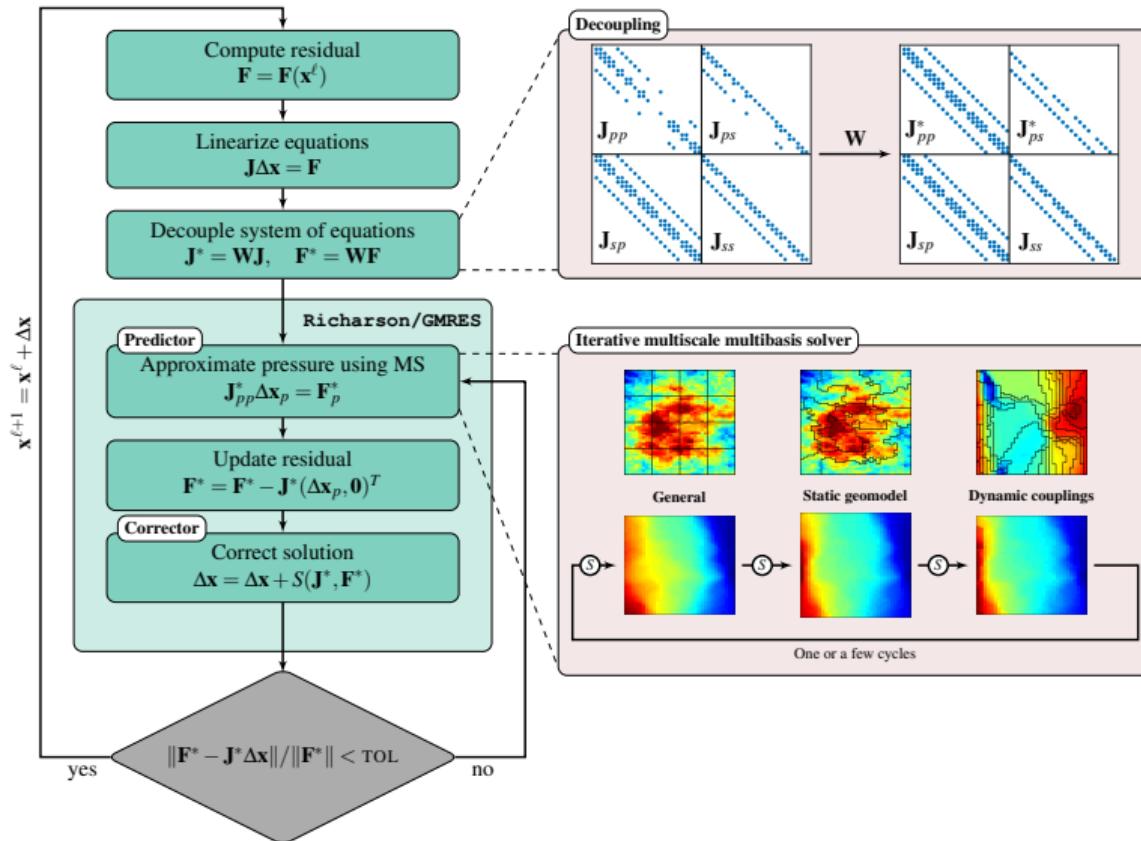
- Permeability/fractures/wells etc.
- Resolves local errors introduced by geological features
- MsRSB or specialized basis functions



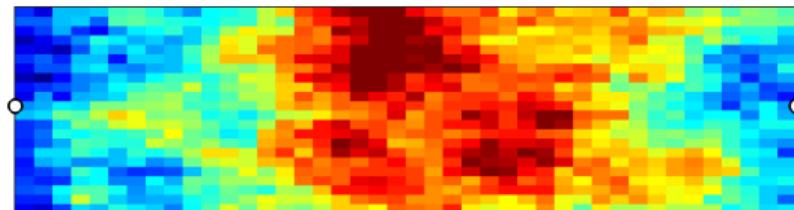
Dynamic couplings

- Partitions based on e.g. $\Delta p \rightarrow$ dynamic
- Local pressure changes along saturation fronts etc.
- Constant basis functions

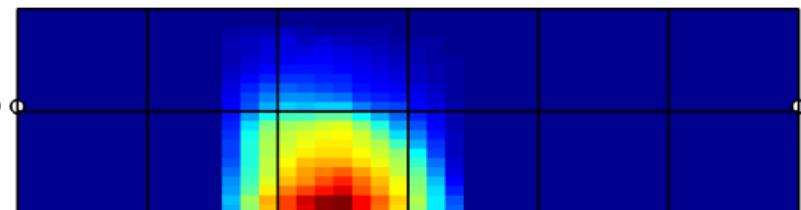
Solution procedure



Example 1: Coupling strength



Permeability

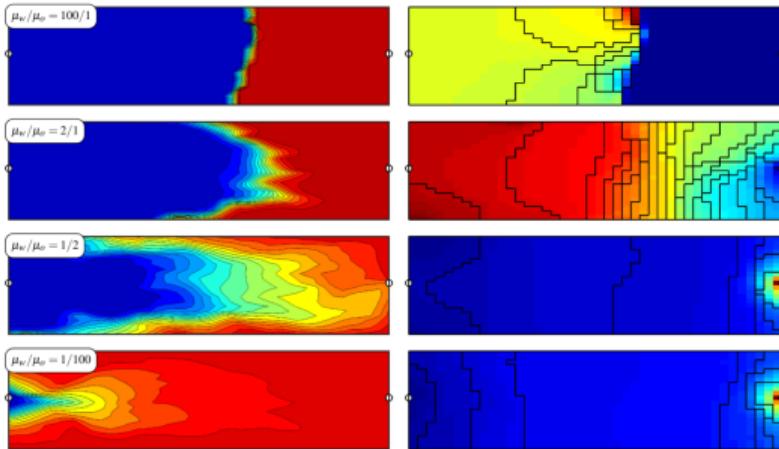


General rectilinear partition

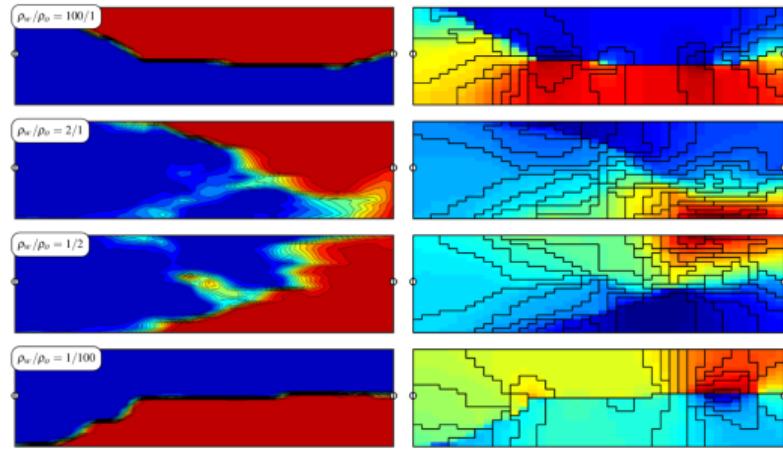
- Incompressible two-phase model with single-component aqueous and liquid phase
- Geological model: 42×22 subset of Layer 10 of SPE 10 Model 2¹
- Initially filled with liquid phase, inject 1 PV of aqueous phase
- General basis: Rectilinear 6×2 with MsRSB basis functions
- Look at effect of dynamic basis functions as we vary viscosity and density ratios

¹Christie and Blunt, 2001

Example 1: Coupling strength

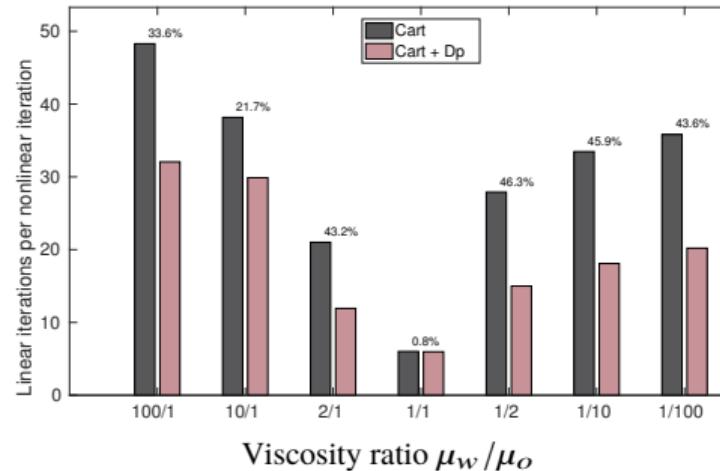
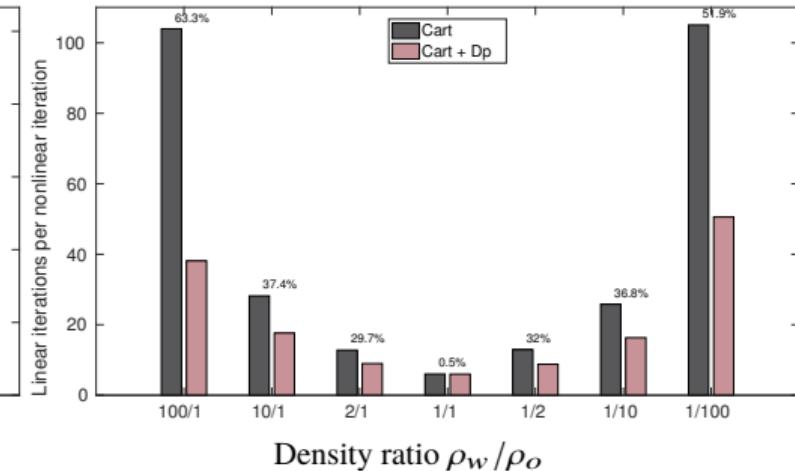


- Varying viscosity ratio μ_w/μ_o
- No capillary or gravity effects included



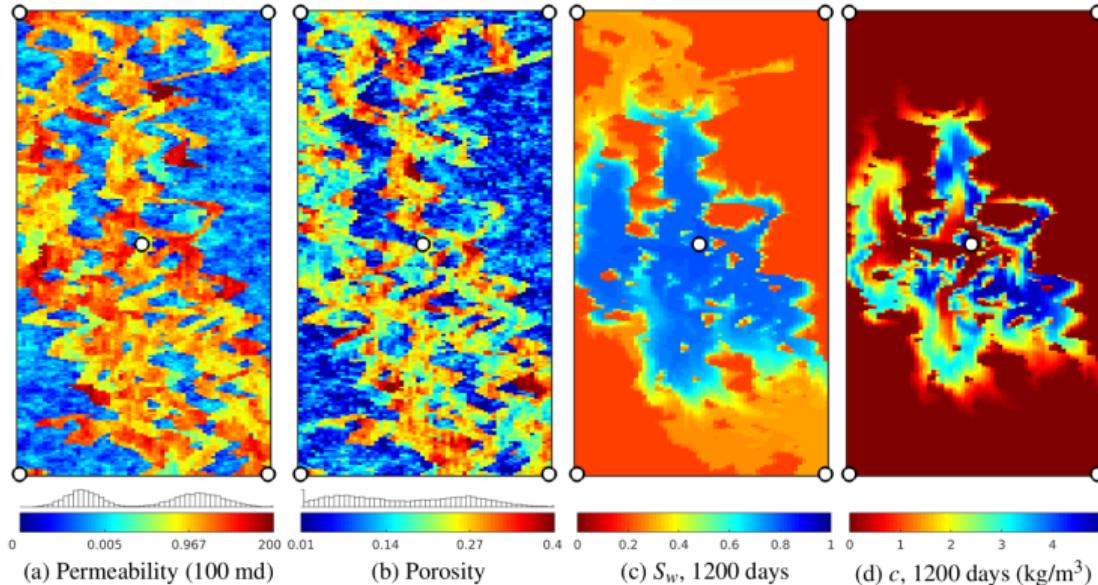
- Varying density ratio ρ_w/ρ_o
- No capillary effects, equal viscosities

Example 1: Coupling strength



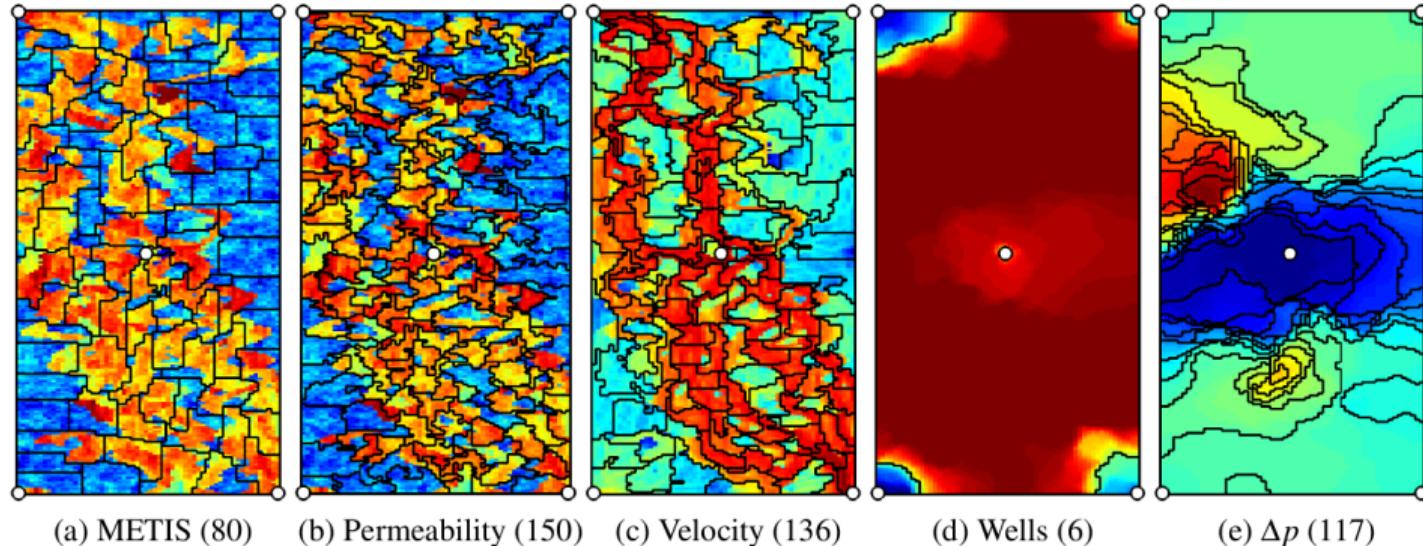
- Average number of linear iterations per nonlinear iteration
- Adding dynamic basis is beneficial in all cases except unit density and viscosity ratios
- Difference of 0.8% and 0.5% comes from the extra smoothing iteration

Example 2: Polymer injection



- Two-phase, three-component: Polymer injection in Layer 52 of SPE 10 Model 2
- Layer consist of high-permeable fluvial channels
- Injection over 2000 days, polymer slug injected from 400 to 800 days

Example 2: Polymer injection



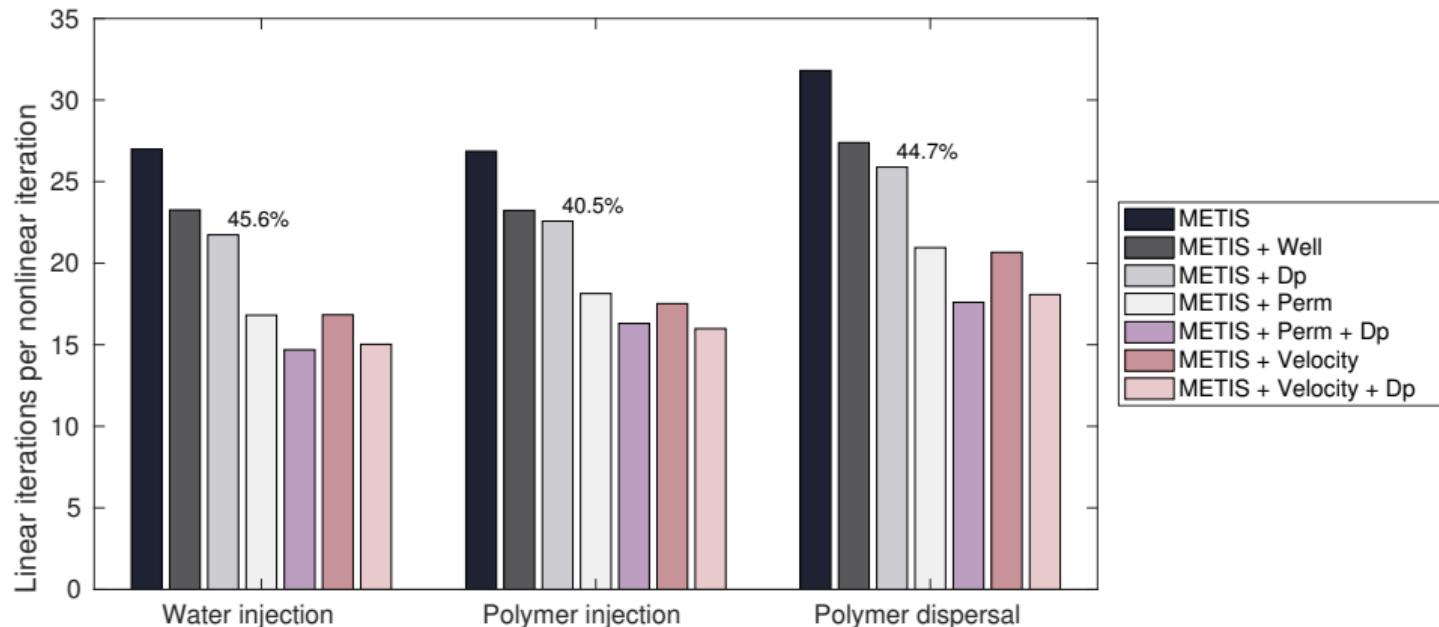
- General partition: MsRSB, partition generated using METIS¹
- Static partitions based on permeability and velocity using agglomeration of grid cells²
- Well partition with specialized basis functions³
- Dynamic partition based on Δp from previous timestep

¹Karypis and Kumar, 1998

²Hauge et al., 2012

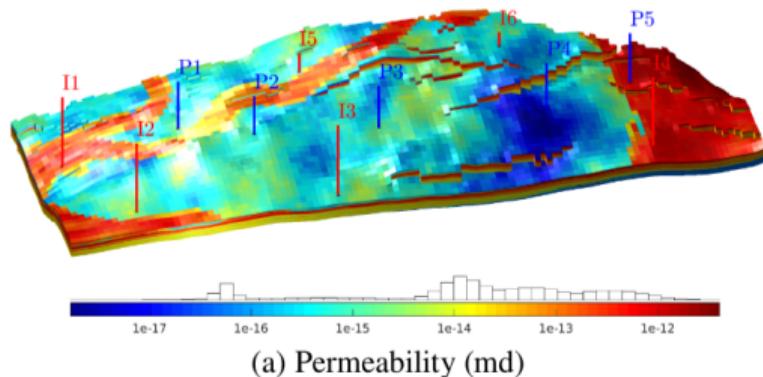
³Lie et al., 2017

Example 2: Polymer injection

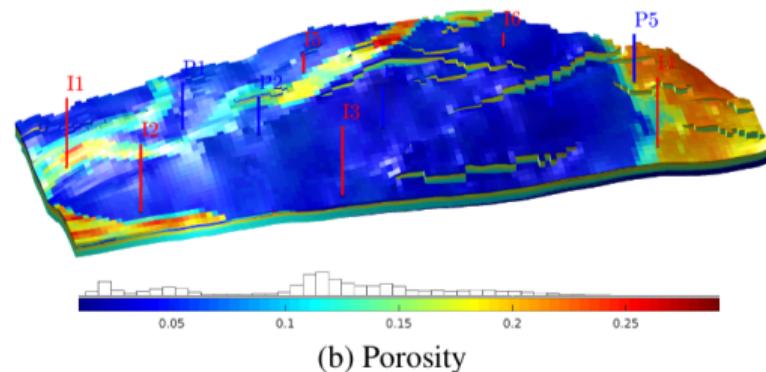


- Average number of linear iterations per nonlinear iteration
- Beneficial with partitions honoring channeled structure
- Significant reduction by adding well partition (only 6 coarse cells)

Example 3: Field model (SAIGUP)



(a) Permeability (md)

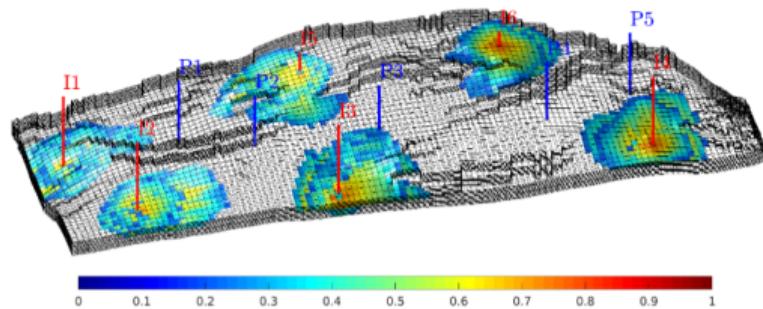


(b) Porosity

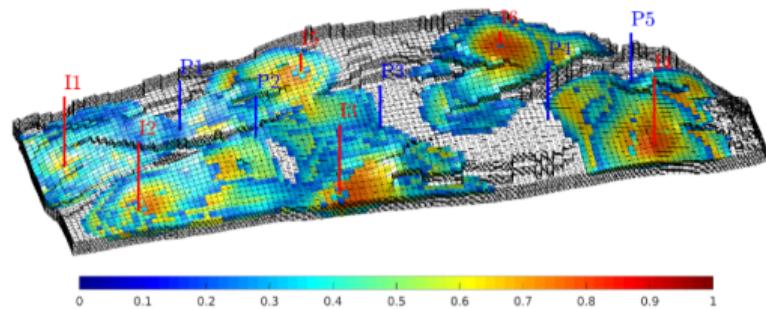
- Shallow-marine oil reservoir, modeled in the SAIGUP study¹
- Spans lateral area of $\sim 9 \times 3 \text{ km}^2$, $40 \times 120 \times 20$ corner-point grid, several major faults
- Simulate WAG injection using four-phase four-pseudo-component model
 - 0.8 PV of water + 0.8 PV of solvent gas/water cycles + 0.8 PV of water

¹Manzocchi et al., 2008

Example 3: Field model (SAIGUP)



(a) Water saturation after initial water injection

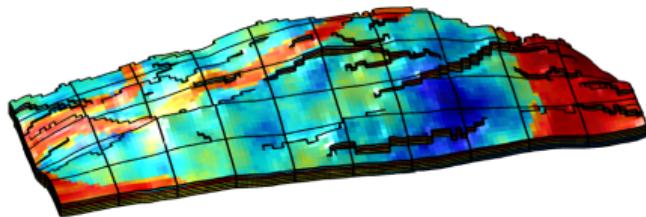


(b) Water saturation after WAG + final water injection

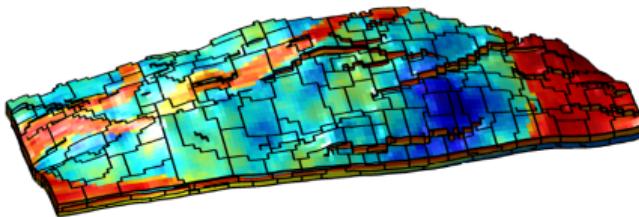
- Shallow-marine oil reservoir, modeled in the SAIGUP study¹
- Spans lateral area of $\sim 9 \times 3 \text{ km}^2$, $40 \times 120 \times 20$ corner-point grid, several major faults
- Simulate WAG injection using four-phase four-pseudo-component model
 - 0.8 PV of water + 0.8 PV of solvent gas/water cycles + 0.8 PV of water

¹Manzocchi et al., 2008

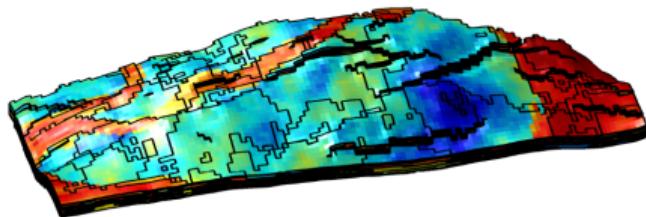
Example 3: Field model (SAIGUP)



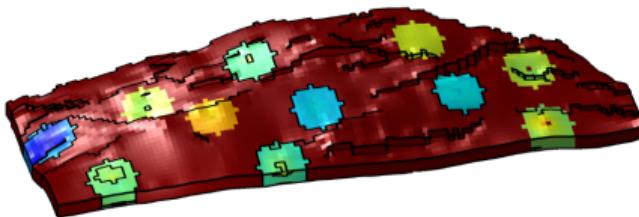
(a) Logically Cartesian (310)



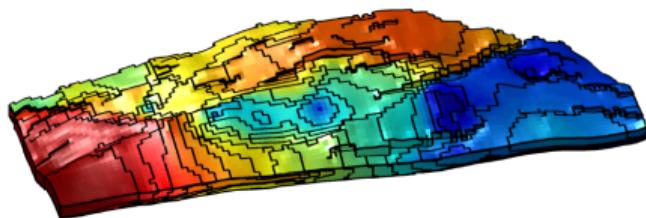
(b) METIS (310)



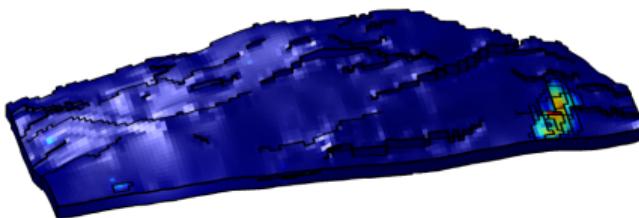
(c) Permeability (103)



(d) Wells (12)

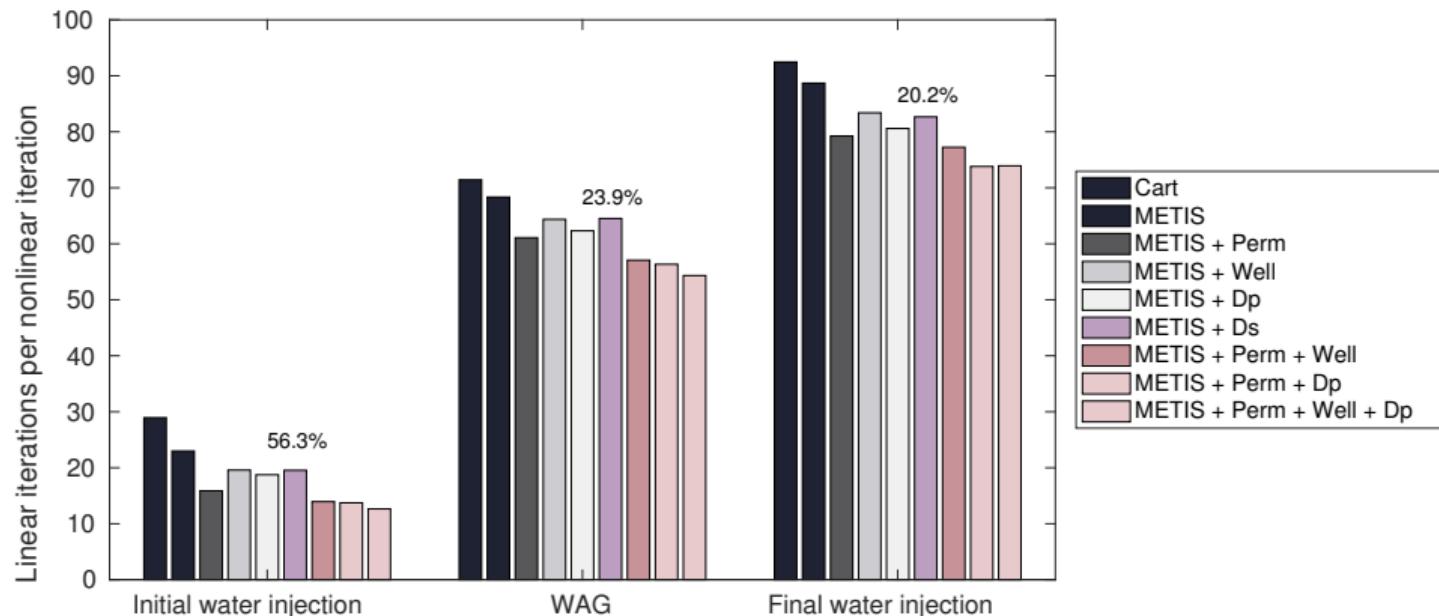


(e) Δp (78)



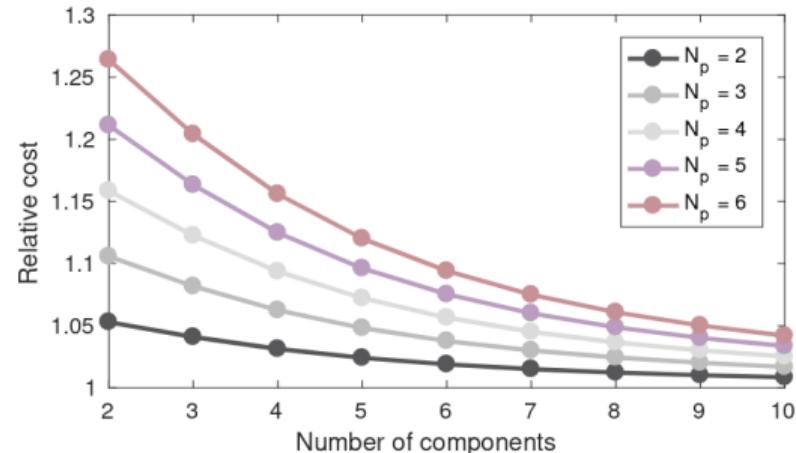
(f) S_s (179)

Example 3: Field model (SAIGUP)

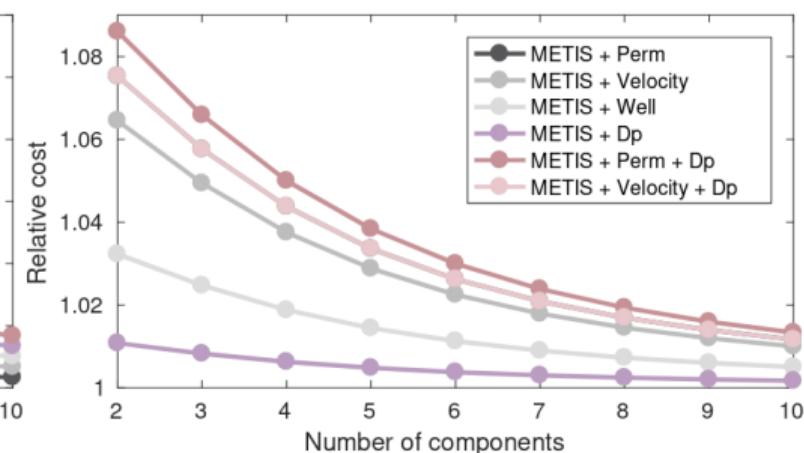


- Significant reduction during initial water injection
- With solvent: Strong coupling between solvent gas saturation and reservoir fluid mobility
→ two-stage CPR preconditioner not as effective.

Computational efficiency



(a) Theoretical: equal overlap $b = d = 15$



(b) Actual numbers from Example 2 (Layer 52, SPE10)

- Cost of using N_p multiscale operators over using just one:

$$c(N_p) = N \left[N_p(4d + 2b + 4) + N_c(d + 1) + N_c(2dN_c + 1) \right]$$

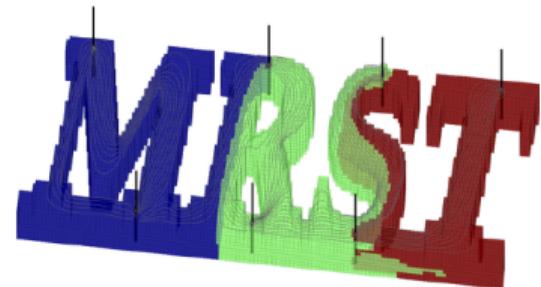
- Relatively small cost compared to solving the full system (max 10 – 15% for realistic scenarios)

Conclusion

- Feature-adapted multiscale method used as pressure solver in CPR preconditioner for a fully-implicit simulator
- Combination of general uniform, static geomodel, and dynamic partitions adapting to pressure update/saturation
 - Honors geological features, near-well regions, dynamic couplings
- Significant reduction in number of linear iterations observed
 - 10 – 60% reduction compared to using CPR preconditioner with a single multiscale operator
- Experiments indicate that it is beneficial with
 - static partitions honoring large permeability contrasts and/or near-well regions;
 - partitions adapting to pressure updates whenever these are located along propagating fluid fronts and/or discontinuous across fluid phase interfaces

Acknowledgements

All simulations have been done using the
MATLAB Reservoir Simulation Toolbox (MRST)



mrst.no

The authors were supported by the Research Council of Norway under grant no. 244361, and VISTA, which is a basic research programme funded by Equinor and conducted in close collaboration with The Norwegian Academy of Science and Letters

Extra – Discretization

$$A_{\beta}^i = \sum_{\alpha} A_{\alpha, \beta}^i, \quad A_{\alpha, \beta}^i = (\phi \rho_{\alpha} S_{\alpha} X_{\alpha \beta})_i^{n+1} - (\phi \rho_{\alpha} S_{\alpha} X_{\alpha \beta})_i^n \quad (\text{Accumulation})$$

$$G_{\beta}^{i,j} = \sum_{\alpha} G_{\alpha, \beta}^{i,j} \quad G_{\alpha, \beta}^{i,j} = \frac{\Delta t}{|\Omega_i|} |\Gamma_{ij}| (\rho_{\alpha} X_{\alpha \beta} \vec{v}_{\alpha} \cdot \vec{n})_{ij}^{n+1} \quad (\text{Flux})$$

$$Q_{\beta}^i = \frac{\Delta t}{|\Omega_i|} (q_{\beta})_i^{n+1} \quad (\text{Sources/sinks})$$

Extra – Decoupling

- Decoupling: find weights \mathbf{w}_β for $k = 2 \dots, N_c$ so that

$$\text{IMPES: } \sum_{\beta=1}^{N_c} \mathbf{W}_\beta \frac{\partial \mathbf{A}_\beta}{\partial \mathbf{x}_k} = \mathbf{0}, \quad \text{quasi-IMPES: } \sum_{\beta=1}^{N_c} \mathbf{W}_\beta \text{diag} \left(\frac{\partial \mathbf{F}_\beta}{\partial \mathbf{x}_k} \right) = \mathbf{0}$$

1. Solve for $\mathbf{w}_1 \dots \mathbf{w}_\beta$

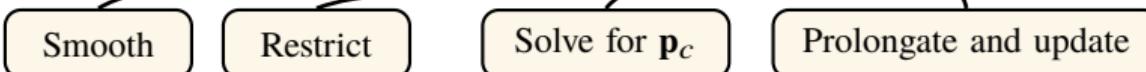
$$\begin{bmatrix} \mathbf{M}_{2,1}^T & \dots & \mathbf{M}_{2,N_c}^T \\ \vdots & \ddots & \vdots \\ \mathbf{M}_{N_c,1}^T & \dots & \mathbf{M}_{N_c,N_c}^T \\ \mathbf{I} & \dots & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_\beta \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}, \quad \mathbf{M}_{k,\beta} = \begin{cases} \frac{\partial \mathbf{A}_\beta}{\partial \mathbf{x}_k} & \text{IMPES} \\ \text{diag} \left(\frac{\partial \mathbf{F}_\beta}{\partial \mathbf{x}_k} \right) & \text{quasi-IMPES} \end{cases}$$

2. Premultiply \mathbf{J} and \mathbf{F} by

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 & \dots & \mathbf{W}_{N_c} \\ \mathbf{0} & \mathbf{I} & \dots & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \dots & & \mathbf{I} \end{bmatrix}, \quad \text{where } \mathbf{W}_\beta = \text{diag}(\mathbf{w}_\beta)$$

Extra – Computational efficiency

- Cost of using N_p multiscale operators (assuming all partitions are equal)

$$N_p O \left(\underbrace{(Nd + N + 2Nd + N)}_{\text{Smooth}} + \underbrace{(Nd + N + bN)}_{\text{Restrict}} + \underbrace{M^p}_{\text{Solve for } \mathbf{p}_c} + \underbrace{(bN + N)}_{\text{Prolongate and update}} \right)$$


- d : Upper bound on number of nonzero elements in rows of \mathbf{A} , $d \ll N$
- M : Number of coarse cells in partition
- b : Maximum number of basis functions with support in a single cell for a Galerkin restriction, $1 < b < M$
- Cost of using N_p multiscale operators over using just one:

$$c(N_p) \approx N \left[N_p (4d + 2b + 4) + N_c (d + 1) + N_c (2dN_c + 1) \right].$$