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Introduction

= Linear systems in reservoir simulation are typically ill-conditioned and challenging to solve
— need for iterative solvers with efficient preconditioners!

® Constrained pressure-residual method (CPR)?: physics-based preconditioner
e inexpensive pressure estimate used in initial guess for solution to full system
® Multiscale methods have been applied as CPR pressure solver’

= Herein: improve convergence of linear solver by applying multiple multiscale operators that

e target specific features in the geological model;
e resolve dynamic couplings between pressure and other variables

Lacroix et al., 2003, 2Wallis, 1983; Wallis et al., 1985; Gries et al., 2014, 3Cusini et al (2015)
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Governing equations

= Conservation of mass for component 3:

0

E(¢[prwa,B + poSOXO,B’ + vava,B]) +V. (prwﬁ‘_’)w + poXO,Bvo + vav,B{;v) =4qp
- k
-

= Fugacity balance:

fé)(p,T,Xol,---onNc) = f"é)(p,T,le’---,XvNc)

m Closure relations: Mass fractions
sum to 1
NC
Phases fill PV SwtSo Sy =1, ;Xaﬁz I, a=wov

Capillary
Po =DPw + Pcow(Sw, So), Pv =Po + Pcvo(sm Sv) pressure
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Discretization

= Introduce grid {Qi}i]\:’ |» backward Euler for temporal discretization, integrate over each cell

— Discrete conservation of mass for component S in cell i:
i _ Al Lj _ i _
Fp=Ab+ > G -05=0

JEN(D)

® Write residuals and variables on vector form F(x) = 0, where

F=F,....Fy)=(F....FN.... F\ .....F\ )= (F,.F)

X = (X,X2,...,XN,) =(pl,...,pN,x%,...,xév,...,x}vc,...,xll\\,fc) = (Xp, X)
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Discretization

® Introduce grid {Q;}Y iL,» backward Euler for temporal discretization, integrate over each cell
— Discrete conservation of mass for component S in cell i:

i _ i Wi _ i =
Fj= AL+ Z Gy -05=0

JEN(D)

® Write residuals and variables on vector form F(x) = 0, where

[ N¢ X N residuals ]—\

F=(F,...Fn)=(F,...FY,.. Fy.....F{) = (F,Fy)

X =(X,X2,...,Xn.) = (P1, ..., PN xz,...,xé\] x}\, ,...,x%c) = (Xp, Xy)

[ N pressure variables ; (Ne — 1) X N
secondary variables
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Preconditioning: constrained pressure-residual (CPR)

= Linearize and neglect higher-order terms — Newton-Raphson method:
Jop Jps| |A%p| _ [Fp
J sp Jss Axs Fs

Jacobian matrix :
(o | e

= Typically solved iteratively, convergence rate reduced by

e Mixed elliptic/hyperbolic character — pressure is a strong variable
e Large aspect ratios and variations in rock properties — ill-conditioned systems

Effective preconditioner crucial
m Constrained pressure residual method (CPR)
1. Decouple system so that (J;‘,p)‘lJ;‘,s is "small"
¢ Obtain inexpensive estimate to pressure update Ax),
2. Solve full system using (Ax,, 0) as initial guess



Preconditioning: constrained pressure-residual (CPR)

Almost elliptic (parabolic)
pressure equation
~JppAxp = F)

= Linearize and neglect higher-order terms — Newton-Raphson method:
J;n J* } AXP} [Fq< ]
sp Jss Ax;

; i Newton update
[ Japlij = 0F3/3xé p Remdual

= Typically solved iteratively, convergence rate reduced by

e Mixed elliptic/hyperbolic character — pressure is a strong variable
e Large aspect ratios and variations in rock properties — ill-conditioned systems

Effective preconditioner crucial
= Constrained pressure residual method (CPR)
1. Decouple system so that (J;],)_IJ}*J 5 is "small"
e Obtain inexpensive estimate to pressure update Ax),
2. Solve full system using (Ax,,, 0) as initial guess



Restriction and ion operators )

Multiscale methods
(Hou and Wu, 1997,

Efendiev and Hou, 2009)




Iterative multiscale multibasis method

= Multiscale methods typically resolve global low-frequency errors quite effectively
= Contain local high-frequency errors due to localization introduced to define basis functions
® Iterative framework!:

Smoothing operation (ILU(k)) ]

X2 = xK 4 S(A, q - AXN),
Xk+1 — Xk+1/2 + P‘QL—ER(q _ Axk+l/2)

Multiscale operation ]

Hajibeygi et al., 2008; Wang et al., 2014
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Iterative multiscale multibasis method

= Multiscale methods typically resolve global low-frequency errors quite effectively
= Contain local high-frequency errors due to localization introduced to define basis functions
® Iterative framework! with multiple multiscale operators:

Smoothing operation (ILU(k)) ]

XKHRLD2N, _ k4 (C=DINp o gLA g — AxKHED/Np),

XKHINp = gkt QE=D/2N, | pl( Ai)‘lR"(q — AXKHRD/2N

Multiscale operation ]

= Each multiscale operator can target specific feature in geomodel
— Feature-enhanced iterative multiscale multibasis method?

"Hajibeygi et al.; 2008, Wang et al., 2014,  2Lie et al., 2016
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Iterative multiscale multibasis method

General partition (always included)

e Similar block sizes (e.g. rectilinear partition)
e MsRSB basis functions (Mgyner and Lie, 2015)
e Resolves global pressure field
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[terative multiscale multibasis method

General partition (always included)

e Similar block sizes (e.g. rectilinear partition)
e MsRSB basis functions (Mgyner and Lie, 2015)
e Resolves global pressure field

Static geomodel features

e Permeability/fractures/wells etc.

e Resolves local errors introduced by geological features
e MsRSB or specialized basis functions




[terative multiscale multibasis method

General partition (always included)

e Similar block sizes (e.g. rectilinear partition)
e MsRSB basis functions (Mgyner and Lie, 2015)
e Resolves global pressure field

Static geomodel features

e Permeability/fractures/wells etc.

e Resolves local errors introduced by geological features
e MsRSB or specialized basis functions

Dynamic couplings
e Partitions based on e.g, Ap — dynamic
e L ocal pressure changes along saturation fronts etc.

e Constant basis functions




Solution procedure

Static geomodel Dynamic couplings

[]@*ﬂ@*[]q

One or a few cycles
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Example 1: Coupling strength

Permebaility General rectilinear partition

Incompressible two-phase model with single-component aqueous and liquid phase
Geological model: 42 x 22 subset of Layer 10 of SPE 10 Model 2!

Initially filled with liquid phase, inject 1 PV of aqueous phase

General basis: Rectilinear 6 x 2 with MsRSB basis functions

Look at effect of dynamic basis functions as we vary viscosity and density ratios

IChristie and Blunt, 2001



Example 1: Coupling strength

B Varying viscosity ratio u,, /o B Varying density ratio p, /o,

m No capillary or gravity effects included = No capillary effects, equal viscosities



Example 1: Coupling strength

T T T T T T o T T T T 5%

. .
I Cart - M Cart
[ICart + Dp 100 [Cart + Dp 1

o
3
T
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I
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o

Linear iterations per nonlinear iteration
Linear iterations per nonlinear iteration

o

100/1 101 2/1 n 12 110 1/100 0 1001 1071 21 n 1/2 110 1/100
Viscosity ratio tty, /o Density ratio py, /po

= Average number of linear iterations per nonlinear iteration

= Adding dynamic basis is beneficial in all cases except unit density and viscosity ratios

m Difference of 0.8% and 0.5% comes from the extra smoothing iteration



Example 2: Polymer injection

) 0.005 0.967 200 0.01 0.14 0.27 040 02 04 06 08 10 1 2 3 4 5

(a) Permeability (100 md) (b) Porosity (¢) Sy, 1200 days (d) ¢, 1200 days (kg/m?)

= Two-phase, three-component: Polymer injection in Layer 52 of SPE 10 Model 2
m Layer consist of high-permeable fluvial channels
= Injection over 2000 days, polymer slug injected from 400 to 800 days



Example 2: Polymer injection

oo S W
(b) Permeability (150)

B General partition: MsRSB, partition generated using METIS!

m Static partitions based on permeability and velocity using agglomeration of grid cells?
m Well partition with specialized basis functions®

= Dynamic partition based on Ap from previous timestep

Karypis and Kumar, 1998 2Hauge etal., 2012 3Lie et al., 2017



Example 2: Polymer injection

35
30 - .
_44.70/0
25 ) .
45.6% _40.5% B METIS
) ] — | |mMETIS + well
0 C_IMETIS + Dp

] ] [ IMETIS + Perm
[TIMETIS + Perm + Dp
[T METIS + Velocity
[ IMETIS + Velocity + Dp

—_
o

—_
o

[$)]

Linear iterations per nonlinear iteration

L L L
Water injection Polymer injection Polymer dispersal

o

= Average number of linear iterations per nonlinear iteration
= Beneficial with partitions honoring channeled structure
= Significant reduction by adding well partition (only 6 coarse cells)
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Example 3: Field model (SAIGUP)

e s I R =ree R e S a T

1e16 le15 le14 le13 e12

(a) Permeability (md) (b) Porosity

= Shallow-marine oil reservoir, modeled in the SAIGUP study!
= Spans lateral area of ~ 9 x 3 km?, 40 x 120 x 20 corner-point grid, several major faults
= Simulate WAG injection using four-phase four-pseudo-component model

e (.8 PV of water + 0.8 PV of solvent gas/water cycles + 0.8 PV of water

IManzocchi et al., 2008
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Example 3: Field model (SAIGUP)

' ' v ' '
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 0.9 1

(a) Water saturation after initial water injection (b) Water saturation after WAG + final water injection

= Shallow-marine oil reservoir, modeled in the SAIGUP study!
= Spans lateral area of ~ 9 x 3 km?, 40 x 120 x 20 corner-point grid, several major faults
= Simulate WAG injection using four-phase four-pseudo-component model

e (.8 PV of water + 0.8 PV of solvent gas/water cycles + 0.8 PV of water

IManzocchi et al., 2008
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Example 3: Field model (SAIGUP)

100
90 -
20.2%
S 80 BEh 1
I _
S 70t 23.9% 7 | M. Cart
I —m I METIS
@ 60 - |EEEMETIS + Perm
£ e [CIMETIS + Well
& 50+ 4 |METIS + Dp
< IIMETIS + Ds
L 40 - |EEZMETIS + Perm + Well
» [ IMETIS + Perm + Dp
S 30 - |C__IMETIS + Perm + Well + Dp
k= 56.3%
5 20 - B
g 10+ HH 1
[
| 0 | L

Initial water injection WAG Final water injection

m Significant reduction during initial water injection

= With solvent: Strong coupling between solvent gas saturation and reservoir fluid mobility
— two-stage CPR preconditioner not as effective.
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Computational efficiency

=@ METIS + Perm 4

1.08
METIS + Velocity
METIS + Well
- . 1.06 ~0—METIS + Dp i
[ 2 ~@—METIS + Perm + Dp
o o i
° ° METIS + Velocity + Dp
= 2 1.04
© o
[5) [5)
[ o
1.02
\
1 1 L L T T ; ¥ _— 1 1 1 L ; : : —H
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Number of components Number of components

(a) Theoretical: equal overlap b =d = 15 (b) Actual numbers from Example 2 (Layer 52, SPE10)

m Cost of using N, multiscale operators over using just one:
¢(Np) = N[Np(4d +2b + 4) + Ne(d + 1) + No(2dN, + 1)]

= Relatively small cost compared to solving the full system (max 10 — 15% for realistic scenarios)
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Conclusion

= Feature-adapted multiscale method used as pressure solver in CPR preceonditioner for a
fully-implicit simulator

= Combination of general uniform, static geomodel, and dynamic partitions adapting to pressure
update/saturation
e Honors geological features, near-well regions, dynamic couplings
= Significant reduction in number of linear iterations observed
e 10 — 60% reduction compared to using CPR preconditioner with a single multiscale operator
= Experiments indicate that it is beneficial with

e static partitions honoring large permeability contrasts and/or near-well regions;
e partitions adapting to pressure updates whenever these are located along propagating fluid
fronts and/or discontinuous across fluid phase interfaces
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Extra — Discretization

i i 1 .
Ap = Z Avp Awp = ($PaSa Xop)!" = ($paSaXap)! (Accumulation)
@
At ot
G;gf = Z G;{,B iljﬁ o] — T/l (pa aBVa - n)lj (Flux)
y n+l Sources/sinks
Op = o |(q 8); (Sou )
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Extra — Decoupling

B Decoupling: find weights wg for k = 2..., N so that

& 9Ag & OF g
IMPES: ; Wsso =0 quasi-IMPES: ; Wp diag (6_xk) =0

1. Solve for wy ... wg

My Moy MY (o oA
. . . : . s IMPES
. : - =], Mgg= di . OFs ,
M Nod oo M No.N. : 0 1ag (8x_k) quasi-IMPES
I ... I wg 1
2. Premultiply J and F by
W, Wn.,
0o I ... o0
W=| . . . |, where Wpg = diag(wg)



Extra — Computational efficiency

m Cost of using N, multiscale operators (assuming all partitions are equal)

N,O((Nd + N +2Nd + N)+(Nd + N + bN)+ MP +(bN + N))

i

[ Smooth ] [ Restrict J [ Solve for p. ] [ Prolongate and update ]

e d: Upper bound on number of nonzero elements in rows of A, d < N

e M: Number of coarse cells in partition
e p: Maximum number of basis functions with support in a single cell for a Galerkin

restriction, 1 < b < M
m Cost of using N, multiscale operators over using just one:

¢(Np) = N[Np(4d +2b +4) + No(d + 1) + Ne(2dN, + 1)].
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