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Motivation

• Geothermal heat is an appealing resource for energy production and storage
— Renewable ✓ Always on ✓ Available anywhere ✓ Low carbon footprint ✓

• Viability depends a number of factors (Glassley 2010; Stober and Bucher 2013)
— Efficiency, storage capacity, operational and drilling costs, legal regulations, ...

• Assessment requires solid system knowledge (Andersson 2007)
— Aquifer/aquiclude geology, groundwater chemistry, flow properties, ...

Complexity and size typically renders numerical simulations the only viable option(O’Sullivan, Pruess, and Lippmann 2000; K. S. Lee 2010; Stober and Bucher 2013)
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Governing equations and discretization

Single-phase conservation of mass on residual form

Rf = ∂t(ϕρf ) +∇ · (ρf v⃗f )− ρf qf = 0

• Velocity given by Darcy’s law: v⃗f = − 1
µf

K(∇p − ρf g∇z⃗)

ϕ Pore volume K Permeability Λ Thermal conductivity g⃗ Gravity
ρ Density µ Viscosity u Internal energy h Enthalpy
p Pressure T Temperature q Sources/sinks r/f Fluid/rock

4 / 31



Governing equations and discretization

Single-phase conservation of mass on residual form

Rf = ∂tMf +∇ · V⃗f − Qf = 0

• Velocity given by Darcy’s law: v⃗f = − 1
µf

K(∇p − ρf g∇z⃗)

ϕ Pore volume K Permeability Λ Thermal conductivity g⃗ Gravity
ρ Density µ Viscosity u Internal energy h Enthalpy
p Pressure T Temperature q Sources/sinks r/f Fluid/rock

Mass Flux Sources/sinks

4 / 31



Governing equations and discretization

Conservation of energy on residual form

Re = ∂t(ϕρf uf + [1 − ϕ]ρrur) +∇ · (ρf v⃗f hf + H⃗)− ρf qf hf = 0

• Conductive heat flux from Fourier’s law: H⃗ = −(Λf +Λr)∇T
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Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
Rn+1 = 1

∆tn (Mn+1 − Mn) + div(Vn+1)− Qn+1 = 0

V = −upw(ρ/µ)[Kgrad(p)− gfavg(ρ)Kgrad(z)]

Ωi
N (i)
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Rn+1 = 1

∆tn (Mn+1 − Mn) + div(Vn+1)− Qn+1 = 0

V = −upw(ρ/µ)[Kgrad(p)− gfavg(ρ)Kgrad(z)]

• Kgrad: discrete operator K∇ (linear/nonlinear two-point, multipoint, mimetic, etc.)
— In this work: linear two-point flux approximation (comparison: Ø. Klemetsdal et al. 2020)

i
j

grad(u)ij

Scalar field u Gradient grad(u)ij = uj − ui

Kgrad = Tgrad

Tij =
(

T−1
i,j + T−1

j,i

)−1

Ti,j = |Fij|
c⃗i,jKin⃗i,j

|⃗ci,j|2
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Finite volumes in space, implicit backward Euler in time
Rn+1 = 1

∆tn (Mn+1 − Mn) + div(Vn+1)− Qn+1 = 0

V = −upw(ρ/µ)[Kgrad(p)− gfavg(ρ)Kgrad(z)]

• div: discrete divergence operator

i
i1

i2i3

i4

i5
i6

div(v)i

Interface flux field v Divergence div(v)i =
6

∑
k=1
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Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
Rn+1 = 1

∆tn (Mn+1 − Mn) + div(Vn+1)− Qn+1 = 0

V = −upw(ρ/µ)[Kgrad(p)− gfavg(ρ)Kgrad(z)]

• upw: Upwind discretization (single-point here); favg: Face average operator

λi, ρi

λj, ρj

Ωi
Ωj

vij

(ρλ)ij = ρiλi

ρij =
1
2 (ρi + ρj)
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Governing equations and discretization

Finite volumes in space, implicit backward Euler in time
Rn+1 = 1

∆tn (Mn+1 − Mn) + div(Vn+1)− Qn+1 = 0

V = −upw(ρ/µ)[Kgrad(p)− gfavg(ρ)Kgrad(z)]

Newton’s method: make system R(x) = 0, linearize, neglect higher-order terms
xk+1 = xk +∆x, −∂R

∂x ∆x = R(xk)
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Sequential implicit formulation

1. Form pressure equation as weighted sum of Rf and Re

Rp = ωf Rf + ωeRe, ∂x
(
ωf Mn+1

f

)
+ ∂x

(
ωe[Mf uf + Mrur]

n+1) = 0, x ̸= pressure
2. Solve Rp = 0 with fixed temperature and transport variables → pressure + intercell fluxes
3. Solve Rf = 0 and Re = 0 with fixed pressure and intercell fluxes → temperature + transport

Transport formulation: solve for temperature T and total saturation St

→ allow total saturation to be ̸= 1, multiply densities by total saturation
ρf → Stρf , ρr → Stρr
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Unique prototyping platform:

• Standard data formats
• Data structures/library routines
• Fully unstructured grids
• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

www.mrst.no

8 / 31

http://www.mrst.no
www.mrst.no


MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Unique prototyping platform:

• Standard data formats
• Data structures/library routines
• Fully unstructured grids
• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

Differentiation operators

Write discrete equations on form very close to continuous equations

∇ · H⃗ H⃗ = −(λf + λr)∇T
div(H) H = -(lambdaF + lambdaR).*grad(T)

Automatic differentiation

Combine chain rule and elementary differentiation rules by means of
operator overloading to analytically evaluate all derivatives

→ Computing Jacobians amounts to writing down residual equations.

[x,y] = initVariablesADI(1,2); z = 3*exp(-x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y
∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2
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Reservoir simulation grids

• Subsurface reservoirs are complex: layers, faults, fractures, erosion, wells, ...
• Simulation models often upscaled → polyhedral cells with full-tensor permeability

Low permeability

Thin cells

Internal gap

Non-matching faces

Twisted grid

Many neighbors Degenerate cells
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Reservoir simulation grids

• Subsurface reservoirs are complex: layers, faults, fractures, erosion, wells, ...
• Simulation models often upscaled → polyhedral cells with full-tensor permeability

Low permeability

Thin cells

Internal gap

Non-matching faces

Twisted grid

Many neighbors Degenerate cells

How can we dynamically adapt thespatial resolution in such grids?
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Dynamic coarsening

• Transport of geothermal heat chiefly confined to proximity of wells
• Difficult to determine appropriate grid resolution a priori
• Many geomodels are not suitable for conventional grid refinement methods

• Reservoir engineering applications:
# cells in simulation grid ≪ # cells in geocellular model

• State-of-the-art multiscale methods (attempt to) bridge gap for pressure problems(Jenny, S. H. Lee, and Tchelepi 2006; Møyner and Lie 2016; Lie et al. 2017, etc.)
• Here: attempt to bridge this gap for transport problems by dynamic coarsening

11 / 31



Dynamic coarsening

• Transport of geothermal heat chiefly confined to proximity of wells
• Difficult to determine appropriate grid resolution a priori
• Many geomodels are not suitable for conventional grid refinement methods
• Reservoir engineering applications:

# cells in simulation grid ≪ # cells in geocellular model
• State-of-the-art multiscale methods (attempt to) bridge gap for pressure problems(Jenny, S. H. Lee, and Tchelepi 2006; Møyner and Lie 2016; Lie et al. 2017, etc.)
• Here: attempt to bridge this gap for transport problems by dynamic coarsening

11 / 31



Dynamic coarsening

Timestep n Indicator Timestep n + 1Level 3

Level 2

Level 1

Level 3

Coarsen Refine

Quandalle and Besset 1983; Christensen et al. 2004; Batenburg et al. 2011; Hoteit and Chawathe 2016; Cusini
and Hajibeygi 2018; Ø. S. Klemetsdal and Lie 2020; Ø. S. Klemetsdal, Møyner, et al. 2021
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Dynamic coarsening

Timestep n Indicator Timestep n + 1Level 3

Level 2

Level 1

Level 3

Coarsen Refine

Keep track of which cells to refine/coarsen using coarsening indicator I(u) ∈ RN
+

Coarse block comprising fine-scale cells C
coarsen if Ii < ϵc for all i ∈ C, refine if Ii > ϵr for any i ∈ C
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Dynamic coarsening – Mapping quantities

Mapping should be inexpensive and energy conservative

1. Accumulate coarse-block energy: ∑i∈C(Mf uf + Mrur)i

2. PV averaged pressures/temperatures, summed total fluxes
pa =

1
Φa

∑

j∈C
(Φp)j, Ta =

1
Φa

∑

j∈C
(ΦT)j, va =

∑

(m,n)∈E

vmn

3. Compute energy in coarse block with adapted properties
4. Ensure conservation of energy through energy discrepancy→ density correction

St =

∑
i∈C(Mf uf + Mrur)i

M̃a
f ũa

f + M̃a
r ũa

r

=
accumulated energy from fine grid

energy on adapted grid

C
E
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r ũa

r

13 / 31



Dynamic coarsening – Mapping quantities

Mapping should be inexpensive and energy conservative

1. Accumulate coarse-block energy: ∑i∈C(Mf uf + Mrur)i

2. PV averaged pressures/temperatures, summed total fluxes
pa =

1
Φa

∑

j∈C
(Φp)j, Ta =

1
Φa

∑

j∈C
(ΦT)j, va =

∑

(m,n)∈E

vmn

3. Compute energy in coarse block with adapted properties
4. Ensure conservation of energy through energy discrepancy→ density correction

St =

∑
i∈C(Mf uf + Mrur)i

M̃a
f ũa
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r ũa

r

=
accumulated energy from fine grid

energy on adapted grid

pa,Ta

va → M̃a
f ũa
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Dynamic coarsening – Solution procedure

Dynamic coarseningSolve Rp = 0 on fine grid
→ pressure/fluxes

Pressure
Solve Re = 0 on adapted grid

→ temperature
Transport

Next timestep

Splitting correction

Grid correction

14 / 31
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Example: SPE10 Model 2

• Heat storage in two different layers of SPE10 Model 2
• Three one-year cycles of storage in center well with pressure support in corner wells

1. Charge: 3 months of injection at 80 ◦C, bhp = 70 bar2. Rest: 3 months with no driving forces3. Discharge: 3 months of extraction, bhp = 1500 bar4. Rest: 3 months with no driving forces
• Three coarsening approaches

1. Static based on incompressible time-of-flight2. Dynamic with residual-based indicator3. Dynamic with temperature indicator
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Example: SPE10 Model 2 – Tarbert (layer 10)
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Example: SPE10 Model 2 – Tarbert (layer 10)

18 / 31



Example: SPE10 Model 2 – Tarbert (layer 10)

18 / 31



Example: SPE10 Model 2 – Tarbert (layer 10)

18 / 31



Example: SPE10 Model 2 – Tarbert (layer 10)

18 / 31



Example: SPE10 Model 2 – Tarbert (layer 10)

18 / 31



Example: SPE10 Model 2 – Tarbert (layer 10)

Dynamic grid relative cell count

0

0.1

0.2

0.3

0.4

0.5
Static (TOF)

Dynamic (res)

Dynamic (temp)
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Example: SPE10 Model 2 – Tarbert (layer 10)

Injection well output

50

60

70

80

Temperature (C)

Fully implicit

Sequential Implicit

Static (TOF)

Dynamic (res)

Dynamic (temp)

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

-100

0

100
Effect (MJ/day)
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Example: SPE10 Model 2 – Upper Ness (layer 85)
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Example: SPE10 Model 2 – Upper Ness (layer 85)

22 / 31



Example: SPE10 Model 2 – Upper Ness (layer 85)

22 / 31



Example: SPE10 Model 2 – Upper Ness (layer 85)

22 / 31



Example: SPE10 Model 2 – Upper Ness (layer 85)

22 / 31



Example: SPE10 Model 2 – Upper Ness (layer 85)

22 / 31



Example: SPE10 Model 2 – Upper Ness (layer 85)
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Example: SPE10 Model 2 – Upper Ness (layer 85)

Injection well output
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Example: SPE10 Model 2

• Very close match with fine-scale results for all indicators and coarsening strategies
— Between 49% and 96% reduction in # transport problem dofs

• Point-wise large temperature differences
• Energy discrepancy correction ensures conservation of energy between scales

25 / 31



Example: Real(istic) Model

• Model of real geothermal storage site, provided by Ruden AS
• Corner-point grid with four geological layers
• Group of center wells inject at 73 ◦C over four months, pressure support in corner wells
• Dynamic coarsening with residual-based indicator
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Example: Real(istic) Model

Reservoir temperature
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Example: Real(istic) Model

Relative L2 energy difference from fully implicit and dynamic grid relative cell count
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0
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Less than 10−3 maximum relative L2 difference with at least 87% reduction in # transport problem dofs
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Concluding Remarks

Conclusions
• Highly flexible dynamic coarsening method for geothermal simulations in MRST

— Sequential splitting of flow and transport/energy— Applicable to unstructured, polytopal grids— Energy discrepancy correction ensures conservation of energy
• Method demonstrated on two examples (low/moderate enthalpy)

— Significant reduction in # dofs in the transport subproblem— Very good match with fine-scale solution
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Concluding Remarks

Further work
• Optimize implementation and investigate actual CPU speedup
• Test method for high-enthalpy systems (phase changes)
• Solve each subproblem at its appropriate timescale

— Multiple transport steps for each pressure step• Combine with a posteriori estimators for error control (Ahmed et al. 2021)
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Concluding Remarks

Related talks

MS83B (16:30) Using MRST for modeling and optimization of operational strategies for a
geothermal storage plant in Asker, Norway

MS50B (16:30) Optimized graph-based methods for subsurface flow simulations
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Dynamic coarsening – Mapping parameters

• Accumulate pore volumes: Φa =
∑

i∈C Φi

• Compute transmissibilities (multiple options):
1. Accumulation: Ta =

∑
(m,n)∈E Tmn2. Upscale permeability and coarse geometry → compute Ta

3. Compute representative transmissibility given flux Ta
mn = vmn/(pm − pn)

• These parameters can be computed in a preprocessing step (except transmissibility option 3)
→ Adapting the grid amounts to looking up precomputed parameters

C
E
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• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

Differentiation operators

Writing discrete equations on form very close to continuous equations

∇ · H⃗ H⃗ = −(λf + λr)∇T
div(H) H = -(lambdaF + lambdaR).*grad(T)

Automatic differentiation

Combine chain rule and elementary differentiation rules by means of
operator overloading to analytically evaluate all derivatives

→ Computing Jacobians amounts to writing down residual equations.

[x,y] = initVariablesADI(1,2); z = 3*exp(-x*y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Unique prototyping platform:

• Standard data formats
• Data structures/library routines
• Fully unstructured grids
• Rapid prototyping:

– Differentiation operators– Automatic differentiation– Object-oriented framework– State functions
• Industry-standard simulation

Differentiation operators

Writing discrete equations on form very close to continuous equations

∇ · H⃗ H⃗ = −(λf + λr)∇T
div(H) H = -(lambdaF + lambdaR).*grad(T)

Automatic differentiation

Combine chain rule and elementary differentiation rules by means of
operator overloading to analytically evaluate all derivatives
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MATLAB Reservoir
Simulation Toolbox (MRST)

Transforming research onreservoir modelling
Large international user base:

• downloads from the whole world
• 124 master theses
• 56 PhD theses
• 400 journal papers (not by us)
• 144 proceedings papers

Numbers are from Google Scholar notifications
Used both by academia and industry

Google Analytics: access pattern for www.mrst.noPeriod: 1 July 2018 to 31 December 2019
Unique downloads: 5 516 (103 countries and 838 cities)
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